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Manual comparison of two processes:
Default vs. optimized application run

- Manual comparison of process event streams is
extremely challenging due to the large number of
events and the need to correctly line up trace events

- Automatic support for event-wise trace comparison
needed
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Construction of sequence A Construction of sequence B

Resulting alignment of sequences A and B [1]

Pairwise Structural Comparisons with
Sequence Alignment Methods
- Sequence alignment allows to compare process structure in detail

- Pairwise comparisons expose differences between two processes

- The pairwise process comparison is computationally expensive,
forbidding exhaustive comparison of all process combinations
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AMG2006: Runtime analysis

- The optimized version runs faster and finishes about
1.25 seconds earlier

[2]
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Call trees for two example processes:

Function pairs of proc 1: Function pairs of proc 2:
pairs(proc 1) ={e¢ - main, main — init, pairs(proc 2) = {€ - main, main — init,
main — fopen, main — fclose, init — fopen, init — fclose}

init — fopen, init — fclose}

Definition of structural similarity based on function pairs: Function pair similarity of the two example processes:
. pairs(P1) N pairs( P .. 4
pairsim( Py, Py) := | (71) (F2) : pairsim(proc 1,proc 2) =g

| pairs(Py) U pairs(Ps)

Structural Similarity Measure

- Structural information is contained in call trees (disregarding timing)
- Easily obtainable from call-path profiles or traces

- Differences between processes are based function pairs that represent the caller-callee relation:
- pairs(P) := {(F,, F,) : F, calls F, on P at least once}
- Measure is independent of: number of calls, number of iterations, recursion depth, timing

- Assumption: static executable — increasing process count or problem size does not increase
the number of function pairs
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Four example processes: Formal context:

(P,AC Fx F,I)

L2 [ ] A ]
o o o o With:

P :={P1, P, P3, P4},
Cno (o CnoCrnD Cro Fi= {Fy, Py, Fy),

A:={e— F\,F) — F5, F} — F3},

I:= {(Pl,e — F), (P2, F1 = F3), (P2,e = F1),
(P2, Fy — F3), (P3,e = F1), (P3, F1 — F3),
(P3, Fy — F3), (Py,e = F1), (Py, F1 — F3) }

Incidence relation table for the example processes: [3]
e —~> Fr — F> Fy — F3
P, X X
P> X X
Ps X X X
Py X X

Formal Context

- The function pair similarity measure is set-based and allows to use
formal concept analysis methods

- Similarity data can be described as a formal context [4], which is a
triple (O,A,I), where
- O is a set of objects,
- A a set of attributes,
- and I € O x A an incidence relation associating objects with attributes
- Storing the information of all function pairs in a table is not scalable
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Four example processes: Incidence relation table for the example processes:

| P | | Py | | Py | e — Iy F, —» Fy F1 — F35
P X X

Cno Cno  Crno CaD Py | X X
Ps X X X

> D GoCnD G . "

Concept lattice with redundant information: Concept lattice without redundant information:

({P17P2,P3,P4},{6—)F1})

A AR
/

({Ps},{e = F,F1 — Fm@

Concept Lattice

- Concept lattices order and store formal contexts efficiently

- Similar processes are grouped during construction

- Lattices have a small memory footprint; each process and each
function pair occurs exactly once in the lattice

- Lattice construction is done using the algorithm from van der Merwe [5],
that allows iterative adding of processes

- Expected complexity for building and storing the lattice is linear,
the worst case is complexity is exponential
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Concept lattice for BT with 16 MPI processes (red) and 15 OpenMP threads (blue) per process:

min
pairs (56)

procs (15)
pairs (53)

procs (240)
pairs (13)

[3]

Concept Lattice for BT-MZ

- 256 processes in total
3 groups
- Two groups with MPI processes (red)
- One group with OpenMP threads (blue)
All processes share 56 function pairs
- No process executes all function pairs
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Application

Result

Name Processes Func. |t.,,; Lattice Process

pairs | (ms) Nodes Groups
HPL 2,360 8| < 10 2 2
GROMACS 36 1,381| < 10 24 11
CCLM 180 180|< 10 6 3
COSMO-SPECS 100 50| < 10 1 1
WRF 64 774|< 10 2 2
FD4 65,536 55 55 22 14
HOMME 1,024 179|< 10 3 3
AMG2006 1,024 440 66 11 7
IRS 64 989 34 18 7
LULESH 432 406 49 182 35
ParaDiS 128 649(3,486 6,367 74
PIConGPU 39 474 11 60 17
BT-MZ 16 126|< 10 5 3
HPCC MPI-FFTE 128 109 70 7 <+
PEPC 16,384 113 15 2 2

Applicability Study

- Study using 15 HPC applications with different characteristics
- t.4 denotes the time to construct the lattice containing all

processes and to compute the similarity matrix

- For all applications except ParaDiS t,,,, is below 0.1 seconds
- For 10 applications the number of process groups is below 10

August 1, 2016
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Input Sequences

Sequence A -

Sequence B

Sequence C -

Sequence D

Structural Comparisons of Multiple Sequences

- Progressive multiple sequence alignment (MSA) can align many
sequences to one alignment block

- Progressively applied pairwise alignments add new sequences to the
alignment block

- Structural pre-clustering helps to select processes for comparison
- MSA allows to compare all processes of a cluster in detail
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Input Sequences

Sequence A -
Sequence B -
Sequence C -
Sequence D _
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MSA Block Alignment Steps
Empty MSA Block

Pairwise Alignment 1:

Sequence A

Sequence B

Sequence A

Sequence B

Shle

Pairwise Alignment 2:
Sequence B

Sequence C

Sequence A

Sequence B

Sequence C

Pairwise Alignment 3:

Sequence C

Sequence D

R AR

Sequence A
Sequence B

Sequence C

Sequence D
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proc 1

Hierarchical Multiple Sequence

proc 2

Three input processes

Alignment Approach

- Aligning full process sequences is too computationally expensive

- The hierarchical approach exploits the call-tree structure, and splits up
process sequences into several smaller sub-sequences
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Merged Process-Tree

proc 1/2/3
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Multiple Sequence Alignments
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proc 1

proc 2

proc 3

proc 1/2/3

Merged Call Graph

- The hierarchical MSA method computes a merged call graph

- The merged call graph:

Contains the structural information of all processes
Highlights structural similarities and differences
Useful for subsequent performance analyses

Useful for scalable visualization of performance data
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Merged TL 1
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Merged Call Graph Example: AMG2006

- Merged call graph contains information of 64 processes
- White/gray parts are similar between all processes
- Colored areas indicate “"missing” processes (GAP states)

- Red: many processes
- Blue: few processes
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The color indicates the number of processes contained in the function:
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Conclusion

- Introduced a novel grouping method based on the
structure of processes

Applicable for most application types
Grouping can be efficiently stored and computed
In most cases linear time complexity

In many cases the number of generated clusters remains
low and stable for increasing process counts

Useful as pre-clustering step to improve improve the
effectiveness of traditional analysis techniques

- Introduced a hierarchical multiple sequence alignment
approach to compare the structure of processes

August 1, 2016

Compares the function call structure in detail
Merged call graph combines the complete structural

information of multiple processes and highlights differenc
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