
Center for Information Services and High Performance Computing (ZIH) 

August 1, 2016 

Clustering and Alignment Methods for 
Structural Comparison of Parallel Applications 

Scalable Tools Workshop 2016 
Lake Tahoe, California, USA 
 

Matthias Weber 



Slide 2 

Outline 

-  Motivation 
-  Structural Clustering of Processes 

-  Determining Similarity  
-  Efficient Computation and Storage of Clusters  
-  Applicability Study 

-  Structural Alignment of Processes 

-  Alignment of Multiple Process Sequences  
-  Merged Call Graph 

-  Conclusion 

August 1, 2016 



Slide 3 

Manual comparison of two processes: 
Default vs. optimized application run 
-  Manual comparison of process event streams is 

extremely challenging due to the large number of 
events and the need to correctly line up trace events 

-  Automatic support for event-wise trace comparison 
needed 

August 1, 2016 



Slide 4 

Pairwise Structural Comparisons with 
Sequence Alignment Methods 

-  Sequence alignment allows to compare process structure in detail 
-  Pairwise comparisons expose differences between two processes 
-  The pairwise process comparison is computationally expensive, 

forbidding exhaustive comparison of all process combinations 

A:

B:

m c c m aa

= = _ =CMP: _ =≠

m

m c c m ba m

= =

c b

Resul&ng	alignment	of	sequences	A	and	B	

m c m aa mc

A:

a

calc a

main

m c c m ba mc b

B:

a b

calc b

main

Construc&on	of	sequence	A	 Construc&on	of	sequence	B	

August 1, 2016 

[1] 



Slide 5 

AMG2006 – A parallel algebraic multigrid 
solver for linear systems  
-  Comparison of the default version with an optimized 

version that performs less coarsening, avoiding a lot 
of expensive communication 

-  Shown are the unaligned rank0 processes 
-  Exact differences are hard to spot 

August 1, 2016 

[2] 



Slide 6 

-  The optimized version runs faster and finishes about 
1.25 seconds earlier 

AMG2006: Runtime analysis 
[2] 

August 1, 2016 



Slide 7 

Outline 

-  Motivation 
-  Structural Clustering of Processes 

-  Determining Similarity  
-  Efficient Computation and Storage of Clusters  
-  Applicability Study 

-  Structural Alignment of Processes 

-  Alignment of Multiple Process Sequences  
-  Merged Call Graph 

-  Conclusion 

August 1, 2016 



Slide 8 

Structural Similarity Measure 
-  Structural information is contained in call trees (disregarding timing) 

-  Easily obtainable from call-path profiles or traces 
-  Differences between processes are based function pairs that represent the caller-callee relation: 

-  pairs(P) := {(F1, F2) : F1 calls F2 on P at least once} 
-  Measure is independent of: number of calls, number of iterations, recursion depth, timing 
-  Assumption: static executable → increasing process count or problem size does not increase 

the number of function pairs 

Func&on	pairs	of	proc	1:	

Func&on	pair	similarity	of	the	two	example	processes:	

Call	trees	for	two	example	processes:	

Func&on	pairs	of	proc	2:	

Defini&on	of	structural	similarity	based	on	func&on	pairs:	

August 1, 2016 



Slide 9 

Formal Context 
-  The function pair similarity measure is set-based and allows to use 

formal concept analysis methods 
-  Similarity data can be described as a formal context [4], which is a 

triple (O,A,I), where 
-  O is a set of objects, 
-  A a set of attributes, 
-  and I ⊆ O × A an incidence relation associating objects with attributes 

-  Storing the information of all function pairs in a table is not scalable 

P1 

F1 

F2 F3 F2 

P2 

F1 

F3 

P4 

F1 

F3 

P3 

F1 

Formal	context:	Four	example	processes:	

With:	

Incidence	rela&on	table	for	the	example	processes:	

August 1, 2016 

[3] 



Slide 10 

Concept Lattice 
-  Concept lattices order and store formal contexts efficiently 
-  Similar processes are grouped during construction 
-  Lattices have a small memory footprint; each process and each 

function pair occurs exactly once in the lattice 
-  Lattice construction is done using the algorithm from van der Merwe [5], 

that allows iterative adding of processes 
-  Expected complexity for building and storing the lattice is linear, 

the worst case is complexity is exponential 

P1 

F1 

F2 F3 F2 

P2 

F1 

F3 

P4 

F1 

F3 

P3 

F1 

Four	example	processes:	 Incidence	rela&on	table	for	the	example	processes:	

Concept	laEce	with	redundant	informa&on:	 Concept	laEce	without	redundant	informa&on:	

August 1, 2016 

[3] 



Slide 11 

Concept Lattice for BT-MZ 
-  256 processes in total 
-  3 groups 

-  Two groups with MPI processes (red) 
-  One group with OpenMP threads (blue) 

-  All processes share 56 function pairs 
-  No process executes all function pairs 

Concept	laEce	for	BT	with	16	MPI	processes	(red)	and	15	OpenMP	threads	(blue)	per	process:	
	

August 1, 2016 

[3] 



Slide 12 

Applicability Study 
-  Study using 15 HPC applications with different characteristics 
-  teval denotes the time to construct the lattice containing all 

processes and to compute the similarity matrix 
-  For all applications except ParaDiS teval is below 0.1 seconds 
-  For 10 applications the number of process groups is below 10 

August 1, 2016 

[3] 



Slide 13 

Outline 

-  Motivation 
-  Structural Clustering of Processes 

-  Determining Similarity  
-  Efficient Computation and Storage of Clusters  
-  Applicability Study 

-  Structural Alignment of Processes 

-  Alignment of Multiple Process Sequences  
-  Merged Call Graph 

-  Conclusion 

August 1, 2016 



Slide 14 

Structural Comparisons of Multiple Sequences 
-  Progressive multiple sequence alignment (MSA) can align many 

sequences to one alignment block 
-  Progressively applied pairwise alignments add new sequences to the 

alignment block 
-  Structural pre-clustering helps to select processes for comparison 
-  MSA allows to compare all processes of a cluster in detail 

August 1, 2016 

Sequence A

c

b

Sequence B

Sequence D

Sequence C c

c

b

c

b

b

b

c

Input Sequences



Slide 15 August 1, 2016 

Sequence A

c

b

Sequence B

Sequence D

Sequence C c

c

b

c

b

b

b

c

Input Sequences

Sequence A

Sequence B

Pairwise Alignment 1:

Sequence A

cSequence B b

_

b

c_

MSA Block

Empty MSA Block

cb

_

b

c_

Sequence B c

Sequence C

bb

c_ b

Sequence A

Sequence B cb

_

b

c_

Sequence C c_ b

Sequence C c_ b

Sequence D c

_

b cb

Sequence A

Sequence B cb

_

b

c_

Sequence C c_ b

Sequence D cb cb

_

_

_

Pairwise Alignment 2:

Pairwise Alignment 3:

Alignment Steps



Slide 16 

Hierarchical Multiple Sequence 
Alignment Approach 

-  Aligning full process sequences is too computationally expensive 
-  The hierarchical approach exploits the call-tree structure, and splits up 

process sequences into several smaller sub-sequences 
 

Three	input	processes	

August 1, 2016 

m

proc 1

a

b

b

d

c

a

m

proc 2

a

b

b

e

c

a

m

proc 3

a

c

b

d

c

b



Slide 17 August 1, 2016 

proc 1

proc 2 m

m

Merged Process-Tree

cba

a

_

b

Multiple Sequence Alignments

proc 1/2/3

proc 1/2/3

m

proc 3 m

proc 1

proc 2

proc 3

a

_

b

proc 1/2/3

m

a b c

cb

a

_

b

proc 1

proc 2

proc 3

a

_

b

_proc 1/2/3

m

a b c

a b c

e

d

proc 1

proc 2

proc 3

d

proc 1/2/3

m

a b c

a b c d/e

c

proc 1

proc 2

proc 3

c

_proc 1/2/3

m

a b c

a b c d/e

c

Step

1

2

3

4

5

6

m

proc 1

a

b

b

d

c

a

m

proc 2

a

b

b

e

c

a

m

proc 3

a

c

b

d

c

b



Slide 18 

Merged Call Graph 
-  The hierarchical MSA method computes a merged call graph 
-  The merged call graph: 

-  Contains the structural information of all processes 
-  Highlights structural similarities and differences 
-  Useful for subsequent performance analyses 
-  Useful for scalable visualization of performance data 

 

August 1, 2016 

proc 1/2/3

m

a b c

a b c d/e

c

m

proc 1

a

b

b

d

c

a

m

proc 2

a

b

b

e

c

a

m

proc 3

a

c

b

d

c

b



Slide 19 

Merged Call Graph Example: AMG2006 
-  Merged call graph contains information of 64 processes 
-  White/gray parts are similar between all processes 
-  Colored areas indicate “missing” processes (GAP states) 
-  The color indicates the number of processes contained in the function: 

-  Red: many processes 
-  Blue: few processes 

August 1, 2016 



Slide 20 

Conclusion 
-  Introduced a novel grouping method based on the 

structure of processes  
-  Applicable for most application types 
-  Grouping can be efficiently stored and computed 
-  In most cases linear time complexity 
-  In many cases the number of generated clusters remains 

low and stable for increasing process counts 
-  Useful as pre-clustering step to improve improve the 

effectiveness of traditional analysis techniques 
-  Introduced a hierarchical multiple sequence alignment 

approach to compare the structure of processes 
-  Compares the function call structure in detail 
-  Merged call graph combines the complete structural 

information of multiple processes and highlights differences 

August 1, 2016 



Slide 21 

[1]  Matthias Weber, Ronny Brendel, and Holger Brunst. Trace File 
 Comparison with a Hierarchical Sequence Alignment Algorithm. 
 ISPA ’12, 2012. 

 
[2]  Matthias Weber, Kathryn Mohror, Martin Schulz, Bronis R. de 

 Supinski, Holger Brunst, and Wolfgang E. Nagel. Alignment-
 Based Metrics for Trace Comparison. Euro-Par’13, 2013.  

 
[3]  Matthias Weber, Ronny Brendel, Tobias Hilbrich, Kathryn Mohror, 

 Martin Schulz, and Holger Brunst. Structural Clustering: A New 
 Approach to Support Performance Analysis at Scale. 
 IPDPS, 2016.  

 
[4]  Bernhard Ganter and Rudolf Wille. 

 Formal concept analysis, volume 284. Springer Berlin, 1999. 
 
[5]  Dean Van Der Merwe, Sergei Obiedkov, and Derrick Kourie. 

 A new incremental algorithm for constructing concept lattices. 
 In Concept Lattices, 2004. 

August 1, 2016 


