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Manual comparison of two processes: 
Default vs. optimized application run 
-  Manual comparison of process event streams is 

extremely challenging due to the large number of 
events and the need to correctly line up trace events 

-  Automatic support for event-wise trace comparison 
needed 

August 1, 2016 



Slide 4 

Pairwise Structural Comparisons with 
Sequence Alignment Methods 

-  Sequence alignment allows to compare process structure in detail 
-  Pairwise comparisons expose differences between two processes 
-  The pairwise process comparison is computationally expensive, 

forbidding exhaustive comparison of all process combinations 
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AMG2006 – A parallel algebraic multigrid 
solver for linear systems  
-  Comparison of the default version with an optimized 

version that performs less coarsening, avoiding a lot 
of expensive communication 

-  Shown are the unaligned rank0 processes 
-  Exact differences are hard to spot 
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-  The optimized version runs faster and finishes about 
1.25 seconds earlier 

AMG2006: Runtime analysis 
[2] 
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Structural Similarity Measure 
-  Structural information is contained in call trees (disregarding timing) 

-  Easily obtainable from call-path profiles or traces 
-  Differences between processes are based function pairs that represent the caller-callee relation: 

-  pairs(P) := {(F1, F2) : F1 calls F2 on P at least once} 
-  Measure is independent of: number of calls, number of iterations, recursion depth, timing 
-  Assumption: static executable → increasing process count or problem size does not increase 

the number of function pairs 

Func&on	pairs	of	proc	1:	

Func&on	pair	similarity	of	the	two	example	processes:	

Call	trees	for	two	example	processes:	

Func&on	pairs	of	proc	2:	

Defini&on	of	structural	similarity	based	on	func&on	pairs:	
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Formal Context 
-  The function pair similarity measure is set-based and allows to use 

formal concept analysis methods 
-  Similarity data can be described as a formal context [4], which is a 

triple (O,A,I), where 
-  O is a set of objects, 
-  A a set of attributes, 
-  and I ⊆ O × A an incidence relation associating objects with attributes 

-  Storing the information of all function pairs in a table is not scalable 
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Concept Lattice 
-  Concept lattices order and store formal contexts efficiently 
-  Similar processes are grouped during construction 
-  Lattices have a small memory footprint; each process and each 

function pair occurs exactly once in the lattice 
-  Lattice construction is done using the algorithm from van der Merwe [5], 

that allows iterative adding of processes 
-  Expected complexity for building and storing the lattice is linear, 

the worst case is complexity is exponential 
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Concept Lattice for BT-MZ 
-  256 processes in total 
-  3 groups 

-  Two groups with MPI processes (red) 
-  One group with OpenMP threads (blue) 

-  All processes share 56 function pairs 
-  No process executes all function pairs 

Concept	laEce	for	BT	with	16	MPI	processes	(red)	and	15	OpenMP	threads	(blue)	per	process:	
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Applicability Study 
-  Study using 15 HPC applications with different characteristics 
-  teval denotes the time to construct the lattice containing all 

processes and to compute the similarity matrix 
-  For all applications except ParaDiS teval is below 0.1 seconds 
-  For 10 applications the number of process groups is below 10 
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Structural Comparisons of Multiple Sequences 
-  Progressive multiple sequence alignment (MSA) can align many 

sequences to one alignment block 
-  Progressively applied pairwise alignments add new sequences to the 

alignment block 
-  Structural pre-clustering helps to select processes for comparison 
-  MSA allows to compare all processes of a cluster in detail 
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Hierarchical Multiple Sequence 
Alignment Approach 

-  Aligning full process sequences is too computationally expensive 
-  The hierarchical approach exploits the call-tree structure, and splits up 

process sequences into several smaller sub-sequences 
 

Three	input	processes	
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Merged Call Graph 
-  The hierarchical MSA method computes a merged call graph 
-  The merged call graph: 

-  Contains the structural information of all processes 
-  Highlights structural similarities and differences 
-  Useful for subsequent performance analyses 
-  Useful for scalable visualization of performance data 
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Merged Call Graph Example: AMG2006 
-  Merged call graph contains information of 64 processes 
-  White/gray parts are similar between all processes 
-  Colored areas indicate “missing” processes (GAP states) 
-  The color indicates the number of processes contained in the function: 

-  Red: many processes 
-  Blue: few processes 
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Conclusion 
-  Introduced a novel grouping method based on the 

structure of processes  
-  Applicable for most application types 
-  Grouping can be efficiently stored and computed 
-  In most cases linear time complexity 
-  In many cases the number of generated clusters remains 

low and stable for increasing process counts 
-  Useful as pre-clustering step to improve improve the 

effectiveness of traditional analysis techniques 
-  Introduced a hierarchical multiple sequence alignment 

approach to compare the structure of processes 
-  Compares the function call structure in detail 
-  Merged call graph combines the complete structural 

information of multiple processes and highlights differences 
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