TECHNISCHE
@ UNIVERSITAT
DRESDEN

Center for Information Services and High Performance Computing (ZIH)

Clustering and Alignment Methods for
Structural Comparison of Parallel Applications

Scalable Tools Workshop 2016
Lake Tahoe, California, USA

Matthias Weber

= .
August 1, 2016 ZI 4

DDDDDDD
ccccccc

zzzzzzzzzzzz

Center for Information Services &
High Performance Computing

ssssssssssss
uuuuuuuuu

Outline

- Motivation
— Structural Clustering of Processes
- Determining Similarity
- Efficient Computation and Storage of Clusters
- Applicability Study
— Structural Alignment of Processes
- Alignment of Multiple Process Sequences
- Merged Call Graph

— Conclusion

August 1, 2016 Slide 2

6.0s 65s 70s 75s 80s 85s 9.0s 95s 100s 105s 110s

rank0, default version =

1 [EN

HYPRE_GMRESSetup HYPRE_GMRESSolve
I
g S S——
e I I LI 1]
- — m B NN NN .
N E NN I A _ N NN EEEEEEN -
B [T T T R TR T

rankO, optimized version

1

B

n

e
L[] || I
i I f

|

H O W WNO WL e WN

=

> L

H O WLWWoNOWmBEWN

=

Manual comparison of two processes:
Default vs. optimized application run

- Manual comparison of process event streams is
extremely challenging due to the large number of
events and the need to correctly line up trace events

- Automatic support for event-wise trace comparison
needed
August 1, 2016 Slide 3

Construction of sequence A Construction of sequence B

Resulting alignment of sequences A and B [1]

Pairwise Structural Comparisons with
Sequence Alignment Methods
- Sequence alignment allows to compare process structure in detail

- Pairwise comparisons expose differences between two processes

- The pairwise process comparison is computationally expensive,
forbidding exhaustive comparison of all process combinations

August 1, 2016 Slide 4

6.5s

6.0s

hypre:GMRESSolve

HYPRE_GMRESSolve

tup

hypre_GMRESSetup

HYPRE_GMRESSe

Aligned rank0, default version
1
2

P

HYPRE_BoomerAMGSetu
W hypre_BoomerAMGSetup

N

Aligned ranko0,

ptimized version

1
2

HYPRE_GMRESSolve

)
=
[=]
[}
vl
L
==
=3
o
I
)
—
o
>
=

tup

HYPRE_GMRESSe
hypre_GMRESSetup

P

HYPRE_BoomerAMGSetu
| hypre_BoomerAMGSetup

' Equal Equal
, -

rankO/rank0 AIig_nment state

Slide 5

August 1, 2016

rank0O/rank0 AIignn_\ent state

1 Equal
2 Equal
3 Equal
4 Equal
5 Equal i i ,
6 Equal) ! PEqual ! ;
7 - Equal Bl Eoual Equal AECHE e e trereen I:l‘I:TIT 1nir
8 U I |1 | [| T L B T A I IR N I RN R i
9 1NN e (O I L A U B ARE UM U
ifl’ N N ||Ii e e IIIIIH T 1T Ill FEIITTe 11 || ANl
rankO/rank0, Values of Counter "Runtime Skew" over Time
1.50 .
1.25
1.00
0 0.75
0.50 .
0.25
0.00

Values of Metric "Runtime Skew" over Time
rankl/rankl
rank6/rank6
rankll/rankll
rankl6/rankl6
rank20/rank20

rank25/rank25
rank29/rank29

rank34/rank34
rank38/rank38
rank42/rank42
rank47/rank47
rank52/rank52
rank56/rank56
rank60/rank60

-0.50 -0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50

AMG2006: Runtime analysis

- The optimized version runs faster and finishes about
1.25 seconds earlier

[2]

August 1, 2016 Slide 6

|»

Outline

- Motivation
- Structural Clustering of Processes
- Determining Similarity
- Efficient Computation and Storage of Clusters
- Applicability Study
— Structural Alignment of Processes
- Alignment of Multiple Process Sequences
- Merged Call Graph

— Conclusion

August 1, 2016 Slide 7

Call trees for two example processes:

Function pairs of proc 1: Function pairs of proc 2:
pairs(proc 1) ={e¢ - main, main — init, pairs(proc 2) = {€ - main, main — init,
main — fopen, main — fclose, init — fopen, init — fclose}

init — fopen, init — fclose}

Definition of structural similarity based on function pairs: Function pair similarity of the two example processes:
. pairs(P1) N pairs(P .. 4
pairsim(Py, Py) := | (71) (F2) : pairsim(proc 1,proc 2) =g

| pairs(Py) U pairs(Ps)

Structural Similarity Measure

- Structural information is contained in call trees (disregarding timing)
- Easily obtainable from call-path profiles or traces

- Differences between processes are based function pairs that represent the caller-callee relation:
- pairs(P) := {(F,, F,) : F, calls F, on P at least once}
- Measure is independent of: number of calls, number of iterations, recursion depth, timing

- Assumption: static executable — increasing process count or problem size does not increase
the number of function pairs

August 1, 2016 Slide 8

Four example processes: Formal context:

(P,AC Fx F,I)

L2 [] A]
o o o o With:

P :={P1, P, P3, P4},
Cno (o CnoCrnD Cro Fi= {Fy, Py, Fy),

A:={e— F\,F) — F5, F} — F3},

I:= {(Pl,e — F), (P2, F1 = F3), (P2,e = F1),
(P2, Fy — F3), (P3,e = F1), (P3, F1 — F3),
(P3, Fy — F3), (Py,e = F1), (Py, F1 — F3) }

Incidence relation table for the example processes: [3]
e —~> Fr — F> Fy — F3
P, X X
P> X X
Ps X X X
Py X X

Formal Context

- The function pair similarity measure is set-based and allows to use
formal concept analysis methods

- Similarity data can be described as a formal context [4], which is a
triple (O,A,I), where
- O is a set of objects,
- A a set of attributes,
- and I € O x A an incidence relation associating objects with attributes
- Storing the information of all function pairs in a table is not scalable
August 1, 2016 Slide 9

Four example processes: Incidence relation table for the example processes:

| P | | Py | | Py | e — Iy F, —» Fy F1 — F35
P X X

Cno Cno Crno CaD Py | X X
Ps X X X

> D GoCnD G . "

Concept lattice with redundant information: Concept lattice without redundant information:

({P17P2,P3,P4},{6—)F1})

A AR
/

({Ps},{e = F,F1 — Fm@

Concept Lattice

- Concept lattices order and store formal contexts efficiently

- Similar processes are grouped during construction

- Lattices have a small memory footprint; each process and each
function pair occurs exactly once in the lattice

- Lattice construction is done using the algorithm from van der Merwe [5],
that allows iterative adding of processes

- Expected complexity for building and storing the lattice is linear,
the worst case is complexity is exponential

August 1, 2016 Slide 10

@ {Pz, Py}, {F1 — F3}

[3]

Concept lattice for BT with 16 MPI processes (red) and 15 OpenMP threads (blue) per process:

min
pairs (56)

procs (15)
pairs (53)

procs (240)
pairs (13)

[3]

Concept Lattice for BT-MZ

- 256 processes in total
3 groups
- Two groups with MPI processes (red)
- One group with OpenMP threads (blue)
All processes share 56 function pairs
- No process executes all function pairs

August 1, 2016 Slide 11

Application

Result

Name Processes Func. |t.,,; Lattice Process

pairs | (ms) Nodes Groups
HPL 2,360 8| < 10 2 2
GROMACS 36 1,381| < 10 24 11
CCLM 180 180|< 10 6 3
COSMO-SPECS 100 50| < 10 1 1
WRF 64 774|< 10 2 2
FD4 65,536 55 55 22 14
HOMME 1,024 179|< 10 3 3
AMG2006 1,024 440 66 11 7
IRS 64 989 34 18 7
LULESH 432 406 49 182 35
ParaDiS 128 649(3,486 6,367 74
PIConGPU 39 474 11 60 17
BT-MZ 16 126|< 10 5 3
HPCC MPI-FFTE 128 109 70 7 <+
PEPC 16,384 113 15 2 2

Applicability Study

- Study using 15 HPC applications with different characteristics
- t.4 denotes the time to construct the lattice containing all

processes and to compute the similarity matrix

- For all applications except ParaDiS t,,,, is below 0.1 seconds
- For 10 applications the number of process groups is below 10

August 1, 2016

[3]

Slide 12

Outline

- Motivation
— Structural Clustering of Processes
- Determining Similarity
- Efficient Computation and Storage of Clusters
- Applicability Study
- Structural Alignment of Processes
- Alignment of Multiple Process Sequences
- Merged Call Graph

— Conclusion

August 1, 2016 Slide 13

Input Sequences

Sequence A -

Sequence B

Sequence C -

Sequence D

Structural Comparisons of Multiple Sequences

- Progressive multiple sequence alignment (MSA) can align many
sequences to one alignment block

- Progressively applied pairwise alignments add new sequences to the
alignment block

- Structural pre-clustering helps to select processes for comparison
- MSA allows to compare all processes of a cluster in detail

August 1, 2016 Slide 14

Input Sequences

Sequence A -
Sequence B -
Sequence C -
Sequence D _

August 1, 2016

MSA Block Alignment Steps
Empty MSA Block

Pairwise Alignment 1:

Sequence A

Sequence B

Sequence A

Sequence B

Shle

Pairwise Alignment 2:
Sequence B

Sequence C

Sequence A

Sequence B

Sequence C

Pairwise Alignment 3:

Sequence C

Sequence D

R AR

Sequence A
Sequence B

Sequence C

Sequence D

Slide 15

proc 1

Hierarchical Multiple Sequence

proc 2

Three input processes

Alignment Approach

- Aligning full process sequences is too computationally expensive

- The hierarchical approach exploits the call-tree structure, and splits up
process sequences into several smaller sub-sequences

August 1, 2016

proc 3

Slide 16

August 1, 2016

Merged Process-Tree

proc 1/2/3

l proc 1/2/3 J

l proc 1/2/3 J
y
(mf)

/

O ® ©

l proc 1/2/3 J
y

(m)

VAR,

\/

Multiple Sequence Alignments

proc 1 -
proc 2 -
proc 3 -

proc 1
proc 2
proc 3

proc 1

proc 2

proc 3
Slide 17

proc 1

proc 2

proc 3

proc 1/2/3

Merged Call Graph

- The hierarchical MSA method computes a merged call graph

- The merged call graph:

Contains the structural information of all processes
Highlights structural similarities and differences
Useful for subsequent performance analyses

Useful for scalable visualization of performance data

August 1, 2016

Slide 18

Merged TL 1

1 main

2 HYPRE_GMRESSetup

3 hypre_GMRESSetup

4 HYPRE_BoomerAMGSetup

5 hypre_BoomerAMGSetup

6 hypre_BoomerAMGBuiIdExtPllnterp

7 hypre_ParCSRFindExtendCommPkg

8 hypre_NewCommPkgCreate_core

9 hypre_DataExchangelList

hypre_qgsort2i

|

l

10 }IIIEI [LLLLELLETLETLEELTRLEELEELE i o IO

1

12 !_ > 4 ? g " > 4 g W
14 [T GRS IGRRA7 T TERRZY T T feapaiTeAPAS | [GAPA0 TGARAZ | T T TeReas T
15 PR NP (| VOFPETTONPNEN (WU NN (U — I Nl P ..
16 . b eIl L1] | NN Eei P N
7 MENMN fE N N RN NN L. NIl B el e HE
18 : | W R0 WMEENR | (1T enimym nm g W | N H
19 A B L N F1rni nrn [I | 1 L
20 o | 111 11 1 | K

2 I | | : ol I

22 1

Merged Call Graph Example: AMG2006

- Merged call graph contains information of 64 processes
- White/gray parts are similar between all processes
- Colored areas indicate “"missing” processes (GAP states)

- Red: many processes
- Blue: few processes

August 1, 2016

The color indicates the number of processes contained in the function:

Slide 19

Conclusion

- Introduced a novel grouping method based on the
structure of processes

Applicable for most application types
Grouping can be efficiently stored and computed
In most cases linear time complexity

In many cases the number of generated clusters remains
low and stable for increasing process counts

Useful as pre-clustering step to improve improve the
effectiveness of traditional analysis techniques

- Introduced a hierarchical multiple sequence alignment
approach to compare the structure of processes

August 1, 2016

Compares the function call structure in detail
Merged call graph combines the complete structural

information of multiple processes and highlights differenc

€s

Slide 20

[1]

[2]

[3]

[4]

[5]

Matthias Weber, Ronny Brendel, and Holger Brunst. Trace File
Comparison with a Hierarchical Sequence Alignment Algorithm.
ISPA '12, 2012.

Matthias Weber, Kathryn Mohror, Martin Schulz, Bronis R. de
Supinski, Holger Brunst, and Wolfgang E. Nagel. Alignment-
Based Metrics for Trace Comparison. Euro-Par’13, 2013.

Matthias Weber, Ronny Brendel, Tobias Hilbrich, Kathryn Mohror,
Martin Schulz, and Holger Brunst. Structural Clustering: A New

Approach to Support Performance Analysis at Scale.
IPDPS, 2016.

Bernhard Ganter and Rudolf Wille.
Formal concept analysis, volume 284. Springer Berlin, 1999.

Dean Van Der Merwe, Sergei Obiedkov, and Derrick Kourie.
A new incremental algorithm for constructing concept lattices.
In Concept Lattices, 2004.

August 1, 2016 Slide 21

