
1 

 

Correlating Performance, Code  

Location and Memory Access 
 

Harald Servat, Jesus Labarta, Judit Gimenez 
 

Scalable Tools Workshop - Lake Tahoe, Aug 2nd  2016 



2 2 

Combine instrumentation and sampling 
– Instrumentation delimits regions (routines, loops, …) 

– Sampling  exposes progression within a region 

 

Capture performance counters and call-stack references 

Iteration #1 Iteration #2 Iteration #3 

Synth Iteration 

Initialization Finalization 

Folding: instantaneous metric with minimum overhead 



3 3 

Adding PEBS to Paraver traces 

Memory related data in the trace 

 
– PEBS events 

• Loads: address, cost in cycles, level providing the data 

• Stores: only address 

• Sampling frequency:  
– Possibly different rate for both loads and stores 

– One entry PEBS buffer. Signal Extrae on individual event. 

• Multiplexing: alternate periods sampling loads and stores 

 



4 4 

Memory object references 

Memory related data in the trace 
– Interception of mallocs and frees 

• Emit object id/call stack 

• With threshold on allocated size  (potential unresolved objects) 

– Identification of memory object on sampled references 
• Static object from symbol table  Identify variable name 

• Dynamic objects from instantaneous memory map  Identify malloc where 

object was allocated 
 

Observation 
– Same source code  different per process address space 

• Randomization Linux security 

 

Insight 
– Folding should be applied on a per 

process basis 
 

Different  base addresses 
Different  

most 

frequent 

buffers 



5 5 

Analytics 

Identification of coarse grain repetitive structure (prerequisite) 
– Computation bursts 

• Between calls to the runtime (MPI, OpenMP) 

• Clustering  

– Iteration (longer intervals with runtime calls)  
• Manually:  

– Extrae_event API call  

– Paraver analysis 

• Automatic: Using spectral analysis  (WIP) 

• Clustering 
– Isolate different modes, eliminate outliers 

 

Folding generates: 
– Gnuplot 

– Paraver trace 
• All PEBS related events are projected and ordered into a representative 

instance of the repetitive region 

• The same Paraver configuration files can be applied 



6 6 

Looking at Lulesh: 1. Performance 

MPI calls 

Useful duration 

Useful instructions 

27 MPI ranks in 2 nodes (2 sockets x 12 cores each node) 



7 7 

Looking at Lulesh: 1. Performance 

Histogram useful duration 

Histogram useful instructions 

Process mapping 

Histogram clock frequency 



8 8 

Looking at Lulesh: 1. Performance 

One iteration 

4 tasks selected 



9 9 

Looking at Lulesh: 2. Code location 

Approximation based on call stack @ MPI calls 

Approximation based on folded call stack 



10 10 

Looking at Lulesh: 3. Memory access 
PEBS address  



11 11 

Looking at Lulesh: 3. Memory access 
PEBS address  



12 12 D
R

A
M

 

Looking at Lulesh: 3. Memory access 
L
F

B
 

L
2
 

L
3
 

PEBS level providing the data 



13 13 

Looking at Lulesh: 3. Memory access 

PEBS  cost in cycles (avg.) 



14 14 

Looking at Lulesh: Comparing gnuplots 

Architecture impact Stalls distribution 

T
a
s
k
 2

1
 

T
a
s
k
 2

3
 



15 15 

Conclusions 

Folding can provide low overhead detailed analysis on 

accesses to memory  
– Wide range of new metrics: access pattern, memory objects, memory 

level, cost in cycles,… 

 

Paraver provides huge flexibility combining and correlating the 

new data :) 
– Only required to implement new “paint as” punctual information 

 

 

 

How much far/close to reverse engineering? 
 

 


