
Chad D. Wood 

Scalable Observation System (SOS) 
for Scientific Workflows 
Project Overview & Discussion 

Supervisors: Prof. Allen Malony and Kevin Huck 



“So,	where	is	this	talk	going?”	

To	advocate	and	demonstrate	a	run-%me	system	
designed	to	enable	the	characteriza%on	and	

analysis	of	complex	scien6fic	workflow	
performance	at	scale.	

2 



v  It	is	reasonable	to	want	to	see	“informa6on”	during	
applica6on	execu6on	

v  Informa6on	could	come	from	the	applica6on	as	well	as	
from	the	environment	in	which	the	applica6on	is	
execu6ng	

v  Applica6on:	
Performance,	problem-specific	data	and	metadata,	...	

v  Environment:	
System	state,	resource	usage,	run6me	proper6es,	...	

v Mul6ple	applica6on	components	may	be	running	
together	as	a	workflow,	and	higher-level	workflow	
behavior	might	be	interes6ng	

So, What is the Problem? 

3 



Compute	Time	

DATA	

VIZ	

v  Mul6ple	components	with	data	flow	
v  Complex	interac6ons	with	dynamic	behavior	
v  Components	(or	en6re	flows)	may	be	parallelized	differently	
v  Offline	episodic	performance	analysis	has	limited	benefits	

A:	Parallel	 B:	Serial	

C2:	Serial	

C1:	Irregular	

C1	+	C2	:	Parallel	

Scientific Workflows 

4 

=	Unit	of	Work	
=	Result	



v Scalable	
v Portable	
v Easy	to	use	
v Mul6-purpose	
v Mul6ple	informa6on	sources	
v Operates	at	the	6me	of	applica6on	(workflow)	

execu6on	
v Supports	in	situ	access	
v Low	overhead	and	low	intrusion	
v Ability	to	alloca6on	addi6onal	resources	to	

control	overhead	

What are the Requirements? 

5 



v  Base	on	a	model	of	a	“global”	informa6on	space	
v  U6lize	database	technology	
v  U6lize	MPI	high-performance	communica6on	
v  Build	on	launch	support	in	scheduler	
v  Allow	for	addi6onal	(dedicated)	resource	alloca6on	
v  Flexible	publishing	interface	
v  SOS	architecture	

Design Approach 

6 



7 

SOSflow: HPC Allocations 

Db 

Adb 

Ai Ai 

Adb Adb 

Db Db 

SOSflow	forms	a	func6onal	overlay.	



8 

SOSflow: HPC Allocations 

Db 

Adb 

Ai Ai 

Adb Adb 

Db Db 

In	situ	daemon	with	its	local	database	



9 

SOSflow: HPC Allocations 

Db 

Adb 

Ai Ai 

Adb Adb 

Db Db 

SOS	lives	side	by	side	with	your	tasks	

PE PE SOS 

PE PE PE 

PE PE PE 

PE PE PE 



10 

SOSflow: HPC Allocations 

Db 

Adb 

Ai Ai 

Adb Adb 

Db Db 

Dedicated	nodes	for	aggregate	databases	



11 

SOSflow: HPC Allocations 

Db 

Adb 

Ai Ai 

Adb Adb 

Db Db 

Dedicated	nodes	for	analy@cs	processing	



12 

SOSflow: HPC Allocations 

Db 

Adb 

Ai Ai 

Adb Adb 

Db Db 

Co-located	analy@cs	query	modules	



13 

SOSflow: HPC Allocations 

Db 

Adb 

Ai Ai 

Adb Adb 

Db Db 

Independent	ranks	of	analy@cs	engines	



14 

SOSflow: HPC Allocations 

Db Db Db 

Analy6cs	modules	form	independent	
communica6on	channels	

Adb 

Ai Ai 

Adb Adb 



15 

SOSflow: HPC Allocations 

Db 

Adb 

Ai Ai 

Adb Adb 

Db Db 

SOSflow	data	is	con@nuous	and	asynchronous	



Frequency	
State	
Class	
Type	
Seman@c	
Pa[ern	
Compare	
Mood	
	

Frequency	
State	
Class	
Type	
Seman@c	
Pa[ern	
Compare	
Mood	
	

Source	

SOS	

PUBLICATION	HANDLE	

Value	

...	
Value	

Rela6onship	Hints	

Metadata	
About	both	Pub	Handle	and	Source	

Value	

Scope	
Layer	
Nature	
Retain	

Frequency	
State	
Class	
Type	
Seman@c	
Pa[ern	
Compare	
Mood	
	

Time_Start	
Time_Stop	
TIME_STAMP	
Time_Span	
Sample	
Counter	
Log	
	

Create_Input	
CREATE_OUTPUT	
Create_Viz	
Exec_Work	
Buffer	
Support_Exec	
Support_Flow	
Control_Flow	
Sos	
	

16 

SOSflow: Data Structure 
ENUM	

ENUM	



PUB.	HANDLE	

SOSflow: Data Structure 

@me.	
pack 
send 
recv 

<	defini6ons	>	 <	val_snaps	>	

3 

4 

5 

6 

7 

9 

10 

11 

12 

13 

14 
.	.	.	

.	.	.	

8 

seman@c	

val=___	

mood	
@me.pack	
stored	by	client	
@me.send	
pushed	to	daemon	
@me.recv	
injected	into	db	

Every	value	is	conserved,	with	its	full	history	and	evolving	metadata.	

17 



.	.	.	

SOSflow: Easy to use API 

18 



Source	

SOS	 sosd	
INIT	

GUID_BLOCK	

ANNOUNCE	

PUBLISH	

VAL_SNAPS	

...	

VAL_SNAPS	

Metadata,	
Defs.	/	Structure	

All	pack()’ed	values	

SOSflow: In Situ Socket Communication Protocol 

19 



Source	

SOS	 sosd	

SOSflow: Distributed Asynchronous Runtime (Simple) 

20 

DB	

sosd	
(DB)	

AGGREGATE	

DB	



Client	App	

SOS	

Client	App	

SOS	

Source	

SOS	

sosd	

DB	
massive	database	

of	doom	

sosd	
db	

sosd	
sosd	local_sync	

cloud_sync	
transp

ort	

local	
query	

analy@cs	
helper	

local	
query	

socket	

node	
node	

node	

node	

sosa	
analy@cs	transpo

rt	

SOSflow: Distributed Asynchronous Runtime 

21 

DB	
(on-node)	



22 

SOSflow: Where it Runs 

v  NERSC	
q  Cori	
q  Edison	

v  LLNL	
q  CAB	
q  Catalyst	

v  University	of	Oregon	
q  ACISS	

	

v  Sogware:	
q  OpenMPI	
q  MPICH	
q  Slurm	
q  PBS	

	



23 

SOSflow: Evaluation 

v  Experimental	Setup	
q  Explore	performance	of	work-in-progress	implementa6on	
q  Synthe6c	and	real-world	cases	
q  What	is	the	latency	cost	of	being	async?	

	
v  Synthe6c	Sweep	of	Parameters	

q  Itera6ons:	2	to	10,	steps	of	2	
q  Size:	100	to	500	unique	values	per	pub,	steps	of	100	
q  Delay:	0.5	to	1.0	second,	each	0.1	second	



100	

200	

300	

400	

500	

[SOS_publish()	freq.	shown	as	transparency,	0.5	sec	to	1.0	sec	(darkest)]	

[2	iter]	

[10	iter]	



100	

200	

300	

400	

500	

[Translucency	repr.	SOS_publish()	frequency,	0.5	sec	to	1.0	sec	(darkest)]	

[2	iter]	

[10	iter]	



26 

SOSflow: Evaluation 

v  Real-World	Scenario	
q  TAU	Instrumented	LULESH	on	Cori	
q  TAU	reports	results	to	SOSflow	on	a	6mer	
q  LULESH	calls	SOSflow	API	directly	at	itera6on	
q  SOSflow	gathers	metrics	from	the	OS	

<Video>	



216	
Processes	



343	
Processes	



512	
Processes	



v Performance	improvements	
v  Integrate	more	automa6c	data	gathering	for	

node-level	metrics	
v Support	for	deep	analy6cs	
v Tes6ng	with	addi6onal	real-world	workflows	and	

opera6ng	environments	

Future Work 

30 


