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“So,	where	is	this	talk	going?”	

To	advocate	and	demonstrate	a	run-%me	system	
designed	to	enable	the	characteriza%on	and	

analysis	of	complex	scien6fic	workflow	
performance	at	scale.	
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v  It	is	reasonable	to	want	to	see	“informa6on”	during	
applica6on	execu6on	

v  Informa6on	could	come	from	the	applica6on	as	well	as	
from	the	environment	in	which	the	applica6on	is	
execu6ng	

v  Applica6on:	
Performance,	problem-specific	data	and	metadata,	...	

v  Environment:	
System	state,	resource	usage,	run6me	proper6es,	...	

v Mul6ple	applica6on	components	may	be	running	
together	as	a	workflow,	and	higher-level	workflow	
behavior	might	be	interes6ng	

So, What is the Problem? 
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Compute	Time	

DATA	

VIZ	

v  Mul6ple	components	with	data	flow	
v  Complex	interac6ons	with	dynamic	behavior	
v  Components	(or	en6re	flows)	may	be	parallelized	differently	
v  Offline	episodic	performance	analysis	has	limited	benefits	

A:	Parallel	 B:	Serial	

C2:	Serial	

C1:	Irregular	

C1	+	C2	:	Parallel	

Scientific Workflows 
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=	Unit	of	Work	
=	Result	



v Scalable	
v Portable	
v Easy	to	use	
v Mul6-purpose	
v Mul6ple	informa6on	sources	
v Operates	at	the	6me	of	applica6on	(workflow)	

execu6on	
v Supports	in	situ	access	
v Low	overhead	and	low	intrusion	
v Ability	to	alloca6on	addi6onal	resources	to	

control	overhead	

What are the Requirements? 
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v  Base	on	a	model	of	a	“global”	informa6on	space	
v  U6lize	database	technology	
v  U6lize	MPI	high-performance	communica6on	
v  Build	on	launch	support	in	scheduler	
v  Allow	for	addi6onal	(dedicated)	resource	alloca6on	
v  Flexible	publishing	interface	
v  SOS	architecture	

Design Approach 
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SOSflow: HPC Allocations 
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SOSflow	forms	a	func6onal	overlay.	
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SOSflow: HPC Allocations 

Db 

Adb 

Ai Ai 

Adb Adb 

Db Db 

In	situ	daemon	with	its	local	database	
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SOSflow: HPC Allocations 

Db 

Adb 
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Adb Adb 

Db Db 

SOS	lives	side	by	side	with	your	tasks	

PE PE SOS 

PE PE PE 

PE PE PE 

PE PE PE 
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SOSflow: HPC Allocations 
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Adb Adb 

Db Db 

Dedicated	nodes	for	aggregate	databases	
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SOSflow: HPC Allocations 

Db 

Adb 

Ai Ai 

Adb Adb 

Db Db 

Dedicated	nodes	for	analy@cs	processing	
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SOSflow: HPC Allocations 
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Adb Adb 

Db Db 

Co-located	analy@cs	query	modules	
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SOSflow: HPC Allocations 

Db 

Adb 

Ai Ai 

Adb Adb 

Db Db 

Independent	ranks	of	analy@cs	engines	



14 

SOSflow: HPC Allocations 

Db Db Db 

Analy6cs	modules	form	independent	
communica6on	channels	

Adb 

Ai Ai 

Adb Adb 
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SOSflow: HPC Allocations 

Db 

Adb 

Ai Ai 

Adb Adb 

Db Db 

SOSflow	data	is	con@nuous	and	asynchronous	



Frequency	
State	
Class	
Type	
Seman@c	
Pa[ern	
Compare	
Mood	
	

Frequency	
State	
Class	
Type	
Seman@c	
Pa[ern	
Compare	
Mood	
	

Source	

SOS	

PUBLICATION	HANDLE	

Value	

...	
Value	

Rela6onship	Hints	

Metadata	
About	both	Pub	Handle	and	Source	

Value	

Scope	
Layer	
Nature	
Retain	

Frequency	
State	
Class	
Type	
Seman@c	
Pa[ern	
Compare	
Mood	
	

Time_Start	
Time_Stop	
TIME_STAMP	
Time_Span	
Sample	
Counter	
Log	
	

Create_Input	
CREATE_OUTPUT	
Create_Viz	
Exec_Work	
Buffer	
Support_Exec	
Support_Flow	
Control_Flow	
Sos	
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SOSflow: Data Structure 
ENUM	

ENUM	



PUB.	HANDLE	

SOSflow: Data Structure 

@me.	
pack 
send 
recv 

<	defini6ons	>	 <	val_snaps	>	
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seman@c	

val=___	

mood	
@me.pack	
stored	by	client	
@me.send	
pushed	to	daemon	
@me.recv	
injected	into	db	

Every	value	is	conserved,	with	its	full	history	and	evolving	metadata.	
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SOSflow: Easy to use API 
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Source	

SOS	 sosd	
INIT	

GUID_BLOCK	

ANNOUNCE	

PUBLISH	

VAL_SNAPS	

...	

VAL_SNAPS	

Metadata,	
Defs.	/	Structure	

All	pack()’ed	values	

SOSflow: In Situ Socket Communication Protocol 
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Source	

SOS	 sosd	

SOSflow: Distributed Asynchronous Runtime (Simple) 
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DB	

sosd	
(DB)	

AGGREGATE	

DB	



Client	App	

SOS	

Client	App	

SOS	

Source	

SOS	

sosd	

DB	
massive	database	

of	doom	

sosd	
db	

sosd	
sosd	local_sync	

cloud_sync	
transp

ort	

local	
query	

analy@cs	
helper	

local	
query	

socket	

node	
node	

node	

node	

sosa	
analy@cs	transpo

rt	

SOSflow: Distributed Asynchronous Runtime 
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DB	
(on-node)	
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SOSflow: Where it Runs 

v  NERSC	
q  Cori	
q  Edison	

v  LLNL	
q  CAB	
q  Catalyst	

v  University	of	Oregon	
q  ACISS	

	

v  Sogware:	
q  OpenMPI	
q  MPICH	
q  Slurm	
q  PBS	
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SOSflow: Evaluation 

v  Experimental	Setup	
q  Explore	performance	of	work-in-progress	implementa6on	
q  Synthe6c	and	real-world	cases	
q  What	is	the	latency	cost	of	being	async?	

	
v  Synthe6c	Sweep	of	Parameters	

q  Itera6ons:	2	to	10,	steps	of	2	
q  Size:	100	to	500	unique	values	per	pub,	steps	of	100	
q  Delay:	0.5	to	1.0	second,	each	0.1	second	
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[10	iter]	
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SOSflow: Evaluation 

v  Real-World	Scenario	
q  TAU	Instrumented	LULESH	on	Cori	
q  TAU	reports	results	to	SOSflow	on	a	6mer	
q  LULESH	calls	SOSflow	API	directly	at	itera6on	
q  SOSflow	gathers	metrics	from	the	OS	

<Video>	



216	
Processes	



343	
Processes	



512	
Processes	



v Performance	improvements	
v  Integrate	more	automa6c	data	gathering	for	

node-level	metrics	
v Support	for	deep	analy6cs	
v Tes6ng	with	addi6onal	real-world	workflows	and	

opera6ng	environments	

Future Work 
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