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Scaling Score-P to the next level 
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Approaches 

Scalable system tree description 

Automatic thread-level aggregation 
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System tree definitions 

Single-node definitions: One data 
record per system tree element  
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Score-P finalization memory footprint 
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The goal 

A system tree description with a memory footprint that does 
not depend on the system size 

An parallel algorithm to create the new system tree 
description from local information with constant memory 
footprint  
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Sequence definitions (1) 

Based on the PERI-XML proposal 

Exploit regularity of systems 

Constant size for regular systems 

A depth-first traversal of the system 
tree provides enumeration 

Can be used as index to reference 
individual nodes 
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Sequence definitions (2) 
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Memory footprint 

O( size of definitions + size of communicator ) 

•  For regular systems: Size of definitions in O( 1 ) 

•  MPI communicators: Memory footprint can be O( 1 ) 

•  Current implementations usually O( # processes ) 

•  Expect MPI communicator implementations to scale to the system size 
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Computational complexity 

O( log P * ( tP2P(P) + tComm(P) ) * S * D) 

P: Number of processes 

tP2P: Time of a peer-to-peer communication 

tComm: Time for communicator creation 

S: Size of the sequence definitions 

D: Depth of the system hierarchy 
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Finalization memory footprint (hello world) 
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Memory footprint comparison (hello world)  
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Finalization time (hello world) 
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Thread-level aggregation 

Which data is needed? 
•  Analysis workflow with CUBE 

The compression strategies 

Evaluation of the compression ratio 

Evaluation of the information loss 
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What information is needed? 

Do  
performance 
bottlenecks  

exist? 

Where does 
it occur? 

What is the cause 

1. Investigate  
    associated 
    call path. 
2. Compare respective  
    thread to others. 
3. Correlate other 
    performance data   

Look at 
problem  
indicator 
metrics  

Unfold call tree 
and system tree 
until the problem 

appears as 
exclusive value 

Barrier wait 
time 

Thread X idles 
at barrier Y 
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Aggregation strategies 

SUM:  
•  Aggregates the data of all threads within a process 

SET:  
•  Keeps also statistical data about the value distribution among the threads 

KEY:  
•  Keeps the three so called key threads 

•  Aggregates all others 

CALLPATH:  
•  Clusters threads that have the same call tree structure  

•  Aggregates all threads within a cluster. 
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SET 

Contains: 
•  Sum  

•  Minimum 

•  Maximum 

•  Sum of squares (to calculate standard deviation) 

•  Number of threads 

No correlations between call path and metrics possible 
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KEY 

Need to improve the performance of slowest thread 

You may want to compare it to the other extreme, the fastest thread 

The initial thread plays often an distinct role 

Aggregate other threads 
•  They can provide an average value for comparison 

Slowest/Fastest calculation 
•  Classify regions 

•  Consider measured time in regions that are considered to do work 
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CALLPATH 

Aggregate all threads that have the same call tree structure 
•  Both have at least one visit to a call path 

•  The number of visits is not compared 

Number of resulting clusters depends on application 
•  Compression ratio may vary 
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Compression (1) 
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Constant files sizes 
•  Independent of number of threads per 

process 

•  Same number of locations stored 

•  Compression ratio varies with number of threads 

•  SET a little smaller than KEY because the CUBE 
record stores number of threads as 32 bit value. 
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Imbalance – Test case 

Lulesh 2.0 
•  Insert imbalance in a parallel region via too large schedule 

clause 
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Imbalance – Call tree 
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Imbalance – System trees 

SUM 

CALLTREE 

KEY 

SET 

original 
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Imbalance – Loop Body 

Correlate visits and execution time for the loop body 
•  Some threads have less iterations 

•  Same threads spend less time in loop 

Execution time Visits 
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Imbalance – Loop Body 

Execution 
time 

Visits 

KEY CALLTREE 
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Other test cases 

Task granularity 

Lock contention 

Memory bandwidth saturation 

Per thread resolution less important 

Imbalance is the hard case for thread aggregation 
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Conclusion 

SUM: 
•  Best compression 

•  Good for analysis where thread resolution is not necessary 

KEY: 

•  Possibility to find the most limiting bottleneck 

SET: 
•  Similar compression to KEY 

•  Less correlation possibilities than KEY 

CALLPATH: 
•  Non-optimal cluster criteria 

•  Promising approach 
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Thank you for your attention! 

This material is based upon work supported by the US Department of 
Energy under Grant No. DE-SC0015524 


