
LLNL-PRES-699267

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory
under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

OMPD and a Case Study with STAT
Scalable Tools Workshop

Ignacio Laguna and Gregory L. Lee
August 2, 2016

LLNL-PRES-699267

2

Debugging OpenMP Programs

#pragma omp parallel
{

a[i] = ...
}

Original code

void parallel_region_block()
{

a[i] = ...
}
...
omprt_run_parallel(parallel_region_block);
// code after parallel region

Translated code

Breakpoint

What programmers see

in clone () from libc
in start_thread () from libpthread
in omprt_internal () from libopenmp
in parallel_region_block ()

Stack trace of team member thread

• No history information of the parallel region

• Programmers don’t want to see runtime information

Problems

What programmers would like to see

in block ()
in #omp parallel from file:X

LLNL-PRES-699267

3

 API to allow debuggers understand state of OpenMP runtime

 Cross-runtime solution to debug OpenMP programs
— Currently each parallel debugger has its own solution

 Many use cases:
• Place breakpoints in parallel regions
• Check state of threads
• Tasks parent/child relationships
• Others…. see STAT use case

OMPD: OpenMP Debugging Interface

LLNL-PRES-699267

4

Workflow of OMPD

Application

OpenMP

Runtime Library

Application’s

address space

Debugger

OMPD DLL

Attach

Request

OpenMP

state

1

Request

symbols and

address

information

2

• Handles for threads, parallel regions, tasks1 • Find symbols and addresses in target process2

Debugger’s

address space

Loaded into

debugger’s address

space

LLNL-PRES-699267

5

 We have a prototype of an OMPD library
— Intel / Clang OpenMP Runtime
— OpenMP 3.x only

 We are testing OMPD in multiple debuggers
— GDB (callbacks using GDB)
— STAT (callbacks using DynInst)
— TotalView

 OMPD technical specification has been extended
— RogueWave, RWTH Aachen, LLNL

 Specification document has been made public
— https://github.com/OpenMPToolsInterface/OMPD-Technical-Report

Status Update of OMPD

ompd_finalize

ompd_get_active_level
ompd_get_ancestor_task_region
ompd_get_display_control_vars

ompd_get_dynamic

ompd_get_enclosing_parallel_handle

ompd_get_implicit_task_in_parallel

ompd_get_level

ompd_get_master_thread_in_parallel

ompd_get_max_active_levels

ompd_get_max_threads
ompd_get_nested
ompd_get_num_procs

ompd_get_num_threads

ompd_get_osthread
ompd_get_parallel_function

ompd_get_parallel_handle_string_id

ompd_get_parallel_id

ompd_get_proc_bind

ompd_get_schedule

ompd_get_state

ompd_get_task_enclosing_parallel_handle
ompd_get_task_frame

ompd_get_task_function

ompd_get_task_handle_string_id

ompd_get_task_id

ompd_get_thread_handle

ompd_get_thread_handle_string_id
ompd_get_thread_in_parallel

ompd_get_thread_limit

ompd_get_thread_num
ompd_get_threads

ompd_get_top_parallel_region
ompd_get_top_task_region

ompd_get_version

ompd_get_version_string

ompd_in_final

ompd_in_parallel

ompd_initialize

ompd_is_implicit

ompd_parallel_handle_compare
ompd_process_initialize
ompd_release_address_space_handle

ompd_release_display_control_vars

ompd_release_parallel_handle

ompd_release_task_handle

ompd_release_thread_handle
ompd_task_handle_compare

ompd_thread_handle_compare

Implemented functions

https://github.com/OpenMPToolsInterface/OMPD-Technical-Report

LLNL-PRES-699267

6

OMPD Project Contributors

• Ariel Burton

• John DelSignore

Rogue Wave Software

LLNL
• Ignacio Laguna

• Dong Ahn

• Martin Schulz

• Marty Mcfadden

• Alexandre Eichenberger

IBM

RWTH Aachen University

• Joachim Protze

Rice University

• John Mellor-Crummey

• Lai Wei

LLNL-PRES-699267

7

 Collaborative project between LLNL and university partners
— Prototyped by student during a summer internship
— Development continues with University of Wisconsin, University of

New Mexico, and Denmark Technical University

 Winner of a 2011 R&D 100 award

The Stack Trace Analysis Tool (STAT) is a major success
story for scalable tools development and deployment

 STAT enables debugging millions of processes
— Modular and highly scalable software architecture
— Lightweight analysis and concise user display

 STAT has been crucial to fix production bugs
— Identified 3 million task hang of pf3d on Sequoia
— Widely used on LC HPC systems
— Deployed and used at other sites, including DOE labs

• Packaged in Cray Linux Environment

LLNL-PRES-699267

8

STAT merges stack traces to identify similarities and differences

Your Favorite Debugger

Task 0 Task 1 Task 2

LLNL-PRES-699267

9

Raw stack traces from OpenMP applications are confusing!

• OpenMP runtime

frames disrupt logical

program stack trace

• Worker threads don’t

correspond to

application spawn point

LLNL-PRES-699267

10

OMPD provides an application-oriented view

• OpenMP runtime

frames filtered out

• Worker threads grafted

to spawn location

LLNL-PRES-699267

11

 OMPD
— http://openmp.org/mp-documents/ompt-tr.pdf

 STAT
— http://www.paradyn.org/STAT/STAT.html
— https://github.com/LLNL/STAT

 Contact Info
— Ignacio Laguna lagunaperalt1@llnl.gov
— Greg Lee lee218@llnl.gov

More Information

http://openmp.org/mp-documents/ompt-tr.pdf
http://www.paradyn.org/STAT/STAT.html
https://github.com/LLNL/STAT
mailto:lagunaperalt1@llnl.gov
mailto:lee218@llnl.gov

