(intel®) Look Inside”

Zen and the Art of Performance Monitoring

Michael Chynoweth - Sr. Principal Engineer Intel Corporation

Contributors: Joe Olivas, Patrick Konsor, Rajshree Chabukswar, Seth Abraham, Stas
Bratanov

<l

T T
Intel Confidential — Do Not Forward m
~ imm

Agenda

End in Mind
« Show some of the innovations we have in performance monitoring

« Demonstrate how those advancements resolve problem with examples

Topicl: Delivering definitive paths to debug across all architectures

« Top Down and how it helps avoid pitfalls

Topic2: Determining paths of execution, call stacks and timing

Topic3: Large amounts of data, small timeframe, small perturbance or blind
spots

M

Topic1: Delivering Definitive Paths to Debug Power and Performance

« The Lines Between Segments is Blurring

» Customers ask for training on all segments Quark®, Atom®, Core® and Xeon®
* Problem = Performance monitoring unit features are designed by experts
« Without a clear optimization path, our customers will get on “tangents”

« Example: Customer was concentrating on memory ordering “Nukes” as part of their
performance analysis (Using Top Down we found Nukes were 0.3% of execution)

Memory Ordering Memory Ordering
“Nukes” “Fluffy, Harmless, Rainbow-Colored Bunnies”

\ Customers Should Be Pointed by Our Methodology and Tools Exactly Where to Look @-

Defining One Starting Point For Core, Uncore and
Power Across All SoCs

Examples: One run, to get higher level o
Core = Top Down and allow for debugging
UnCore = Memory further

Power = Energy MSRs

o

R =
=l | =)
2\
b= b
(=]

(=]

o

2

2

o

S

Allow technologigsiiliat Start of single run to debug
can scale down to

Quark At high level

CORE,

inside”

5 \ ‘g
Quark® Core® Xeon Phi®

‘ Start Using Scalable, Consistent and Converged Methodologies m

Consistent Methodologies to Avoid Tangents:
Example = Top Down Methodology for Debugging CPU Bottlenecks

Front End Back End

Top Down breaks the pipeline into 4 categories
= Front End Bound = Bound in Instruction Fetch -> Decode (Instruction Cache, ITLB)
= Back End Bound = Bound in Execute -> Commit (Example = Execute, load latency)

= Bad Speculation = When pipeline incorrectly predicts execution (Example branch
mispredict memory ordering nuke)

» Retiring = Pipeline is retiring uops

M

Event NO_ALLOC_CYCLES.NOT_DELIVERED counts when BackEnd
requests UOPs and FrontEnd Cannot Deliver
Front End au

l L — L — L — L — L — L — L — L — L — 1

10 cycle mispredict MSROM

IF1 IF2

| |
I |
| |
| Instruction Fetch Instruction Decode ;:

] | | | | | 1

AR1 AR2 RSV EX RB1 RB2 RB3 RB4
Allocate

'8 sched Execute [l Retire Commit
Rename :

#l RSV AG DCl1 DC2
B sched Data Cache

|
|
|
EeITTTTEEET—————————————.

Back End

M

Why Do We Use Top Down to Drive Looking
at Other Events?

Stats BayTrail Calculation
Cycles Per Instruction (CPI) 2.9 CPU_CLK_UNHALTED.CORE/INST_RETIRED.ANY
Front End Bound Cost 0.1% NO_ALLOC_CYCLES.NOT_DELIVERED*1/CPU_CLK_UNHALTED.CORE
MSUOPS/UOP_RETIRED 65% UOPS_RETIRED.MS/UOPS_RETIRED.ALL

Microcode Sequencer Entry Cost is 57% of all cycles?! Should | raise the alarm?

Front End

Hint

IF3

Instruction Fetch Instruction Decode

When Would the Microcode Sequencer Matter?

Front End Bound Cost 63.6% NO_ALLOC_CYCLES.NOT_DELIVERED*1/CPU_CLK_UNHALTED.CORE

Looking at just events is dangerous.

Even though MS Entry cost is 57% of all FE 64% of all cycles!

cycles we know that it is not impacting 2x MS issues explain ~97% FE
performance! bottleneck

When Would the Microcode Sequencer Matter?

Stats BayTrail Minimized Calculation
Baytrail
Cycles Per Instruction (CPI) 2.9 4.6 CPU_CLK_UNHALTED.CORE/INST_RETIRED.ANY
Front End Bound Cost 0.1% 63.6% NO_ALLOC_CYCLES.NOT_DELIVERED*1/CPU_CLK_UNHALTED.CORE

Now we have explained ~62%
of all front end bound cycles
explained

Top Down Let Us ldentify Items We Did Not Understand m

Where Is It Going?: Would Like to Better Tag
Indirect Impacts with Top Down

Atom (GFX Enabled) FPS | 96.06 | 106.21 | 120.35 | 132.4 | 137.5 1.43 o E
Perfect Frequency 1.18 1.25 1.20 1.07 1.88 - 600
Scaling § 500
) £ 400
Actual Scaling 1.11 1.13 1.10 1.04 1.43 LI,
Frequency_Dep% 60% | 53% | 50% | 58% 49% g 20
m 100

Non_Frequency_Dep% 40% 47% 50% 42% 51% 0 -

Latency to Memory Causing Problems V

CHT & BDW IA Senstivity with NullHW = c/T(vulLhw) '

—i—BDW (NULL Hw)

o-0-f"—‘—_"_'.'_-_-_‘.—.-_4

500 1000 1500 2000 2500 3000

IA Frequency (MHz)
Source: Graphics Arch Lab

igd10iumd32.dll

Benchmark.exe: 65.80% 2.89 [Retiring=19.44:FrontEnd=23.3: L2_MISS=19%_D:ICACHEMISSES=10%_D
Benchmark.exe \ BackEnd&BadSpec=57.27:
Benchmark.exe: 13.11% 4.15 [Retiring=13.07:FrontEnd=64.55:Bac [ICACHEMISSES=34%_D:ITLB_MISSES=8%:L2_

kEnd&BadSpec=22.37:

MISS=10%_D:

~—

Benchmark binary has a large data cache footprint

Graphics Driver has a large instruction cache footprint

i Graphics Driver and Benchmark Binary Battle Over Instruction + Data Real Estate m

What Are The Last Branch Records?

63 | 6 [e |eoas| 4716 | 150
LBR_FROM_IP SIGN_EXT (bit 47) LBR FROM address
LER_TO IP SIGN_EXT (bit 47) LBR TO address
LBR_INFO MISPRED IN_TX TSX_ABORTED Reserved cycle-count (*)

LBR Overview:
* LBRs dynamically track the last N taken branches:

* N can now traverse from 8 to 32 taken branches

* LBRs can be filtered for types of branches Pay attention, this one
« How are they used today? is brand neW’

* Use them to recreate paths of execution

» Assist in obtaining basic block hit counts

» Used to weight cost of all
» Paths of execution (function, branch, module)
» Compilers are starting to use them for profile guided feedback
* Example = AutoFDO

* Most Recent

» Call stacks to any point of interest with LBR call stack

* Cycle count

LBR is Utilized to Recreate Hot Path of Execution

ERCERRTTRNINN]

BR_MISPREDICT=11% 57,500,000

2,900,000,000 D@ EMPTY=0%
IDC_UOPS_MOT_DELIVERED.FE_STALL=0% s5.000.000

2.800,000,000 SANDYEBRIDGE_HIGH_LATENCY_INSTRUCTION=0%

REG_PLUS_2K_LOAD=0%

2,700,000,000 B DSEZ_MITE_SWITCH=0% 52,500,000
2,600,000,000 ranch SLOW_LEA=0%
CPI=0.47 50,000,000
2,500,000,000 Stats
2,400,000,000 (D) 47,500,000
2,300,000,000 45,000,000
2,200,000,000 i~ 42 500,000
2,100,000,000 Callerstats Calleestats — | 40,000,000 o
=88n.000.809 0x58252f ab=100.0%: 0x58dF50FE=100.0%: a7 500,000 ‘o
1.896.959.800 Ox67Faddbb=100.0%: 0x58dF51 ee=100.0%: 2
1,800,000,000 35,000,000 |
0x67fasZ 1b=100,0%: 0x55269553=100,0%:: =
1,700,000,000 32,500,000
0x58269591 =54, 63%:0x55269581=15, 3?‘:‘.-".:-: 0x58269553=52,52% 1 0x55269593=17. 18‘:‘.-".:-: -]
1,600,000,000 ———— — —_— g
1,500,000,000 | 30,000,000 3
1,400,000,000 27,500,000 |;
1,300,000,000 25,000,000 g
1,200,000,000 3]
22,500,000 I
1.100,000,000 g
1,000,000,000 i fellal ol 'g
200,000,000 aI C 1 Cl eanu p 17,500,000
200,000,000 . = 15,000,000
700,000,000 Allocations Excep_tlon || ! i
00,000,000 Handlin g ‘ | ||| | 12,500,000
500,000,000 |‘ ﬁ 10,000,000
400,000,000 | ‘ ‘ | || || 7,500,000
300,000,000 A ﬂ ﬁ ﬂ | | | | |I| [| ” 5,000,000
200,000,000 | | |’ | || ‘l | | || || N |||I l||'| | | H dal2izd
100,000,000 I 1R |‘ J ﬁ 2,500,000
a s\ e AAN uﬂ|||||kH|J | | ”1 UL o

LBR Allows Visibility of Complete Transaction

How Does Adding Timing Help?

Line Selections (tbb.dll, stream 0)

TBB uses fixed spin of 80 on pause

PAUSE_INSTR=00%

110 4
I.ll]lJZC-I.LDB: be 50 00 00 00 wow esi, 50k Pause instruction is
100 =
= 140 clocks on SKL per Timed LBR
SPIKE 1 (ISSUES)
PAUSE_INSTR=100%
R 70
£
= 60
=3
S so
40
20 { 4 ~ , Jump to switch to thread
Function | sowcelne | HeCounty”] AvoTime (Clocs) | Ohckics%(SKTLAKE) P
10 4
l thb: internal: custom _scheduler:irecetve_or_steal task icustom_scheduler h@275 | 2.797 144 96.51 /
o+ v s ! > , y
<& <& <& <& < < <&
& s s s $& e s
N & N & S B &
Spin on Pause Instruction ot
P |— Clocidticks%(SKYLAKE) |
1 o6 G
Export
sT#|HB#|BB#|LNe| Offset Opcode | Latency(skvLake) | static asm | Function Sourceline HitCount | Clockticks%(SKYLAKE) |
0| O] O O0]100231€0 |F390 a3 9LOOP_START:P. \ tbb:: :icustom_scheduler:receive_or_steal task custom_scheduer.h®275 | 2797645081 _4.21
o o o 1/100231E2 l4€ dec esi | b om_scheduler::receive_or_steal_task custom_scheduler.h®275 | 2797645081 94.31,
0 0 0 2/100231€3 75 F8 100231e0 LOOP, tbb::i 1 custom_scheduler::ireceive_or_steal_task custom_scheduler h@275 | 2797645081 0.00
0 1 9 OilOOZBIES SD743F 02 leaesn edi+edi*1+2] | LEA ;lhb::‘ :icustom_scheduler::receive_or_steal_task custom, _scheduler hi®276 3409882 0.09|
0 1 0 1/100231E9 3B DE crp obx, esi tbb: i i custom_scheduler:ireceive_or_steal_task custom_scheduler h@277 3409882 0,06/
0 1 o __2|100231EB OF 8C EA 01.., }jl 100233db thb:: ::custom_scheduler::receive_or_steal_task icustom_sched: 3409862 0.00/
of 2| o 0;100231#1 8B DE X, esi 1 'Lbb:: :icustom_scheduler::receive_or_steal_task .custom_sdwd 5753092 0.06/
0] 2] 0 1]100231F3 FF 1S B3 E0 kb ::custom_scheduler::recetve_or_steal_task custom_scheduler,h@233 5753092 0.00)

What is Intel® Processor Trace?

Intel® Processor Trace (Intel® PT) is a hardware feature that logs information about software execution with
minimal impact to system execution

Supports control flow tracing with <5% overhead

= Decoder can determine exact flow of software execution from trace log
Can store both cycle count and timestamp information
Intel® Processor Track (Intel® PT) packet log,

binaries, and software runtime data are used to
reconstruct the precise execution flow

Intel
CPU 0..n

Intel PT packet log
(per logical processor)

Intel PT Intel PT-
Configure & Software enabled
enable Intel PT Decoder Tools

Runtime data, including:

* Map linear-address to image files
» Map CR3 value to application

+ Log module load/unload and JIT info

Binary
14 Image Files

Intel Processor Trace is Delivering New Capabilities

Zooming at Microsecond Granularities Locking Debug
ms W (other):0 "7 M util_spinlock_obtain:0 [Determining Contention on a Lock:
& a -800.000ms -6 00.000ms -400.000ms -200.000ms
1nstr"5ec 1 1 1 RETRY_LOCK =10564

600.0e+6 |

GOT_LOCK =43542
10564/(43542 + 10564) = 0.1952 (or 20% contended)

400.0e+6 | .
B:Trace.FindAll , Address _retry_protection

10564 run address cycle 'data S)’/Tthﬂ

b J AW P T A

=

200.0e+6 | §
B:Trace.FindAll , Address V.RANGE("_already_owned")

[__43542 run jaddress _ _cycle Idata symbol

Exceptions Hurting Performance

Interrupt showing up immediately after Ahal Itis a Device Not Available
a conditional jump in memset call Due to touching XMM registers

T |_| == T =

nb / Ox 35056700

b interrupt g

NP : 0000000033050218 ptrace

call 0x3805B510 3 averses tons ;Hﬁtd Vspﬁm ‘
- ;;I’J S;IEESEEEEA'D:{FFF:LFDD;L !+D:{D Of COde NP I 0000000038056700 ptrace
£ movd mm ,
- Inc dword ptr [OxFFF1F004] Sehnfd e o, 00
Cmp dword otr [OxFFF1FO00T .+0x0 1

RTIT Was Up and Running in Weeks...Because It is a Trace-Based Technology

SoC Sizing using Modeling with Instruction Traces

Instruction Cache Miss Rate

Model Icache, ITLB, and pre-decode
in software, with a range of sizes and configs *** |

8.00%
Simulate over traces from target workloads &% -‘gs 2

4.00% —
. . i,
« Instruction traces quick to capture 2.00% N === =

I
0.00% '

0 16384 32768 49152 65536 81920 98304 114688 131072

* And (relatively) quick to simulate

1-way 2-way 4-way 8-way

Enables easy estimation of cache behavior for a given workload

» Accurate within a few percentage points for Icache, ITLB, and pre-decode

Enables evaluation of different cache configs across a range of workloads

! Intel Processor Trace Allows Modeling of Instruction Cache m

Precise Events Are Incredibly Useful

LLC_MISS=25%
250 HIT=12%
LLC_LAT=12%
225 = HITM=5%
ATOMIC_INSTRUCTION=4%
20.0 - CPI=2.19
17.5
R
£ 1501 SPIKE 1 (LFB BREAKDOWN)
-‘é MLC%=17.19
o 125 4 LLC%=70.31
=] SPIKE 1 (LOADS BREAKDOWN) DRAM%=12.5
O o0/ LFB_HIT%=6.54 Kr
o L1D_HIT%=14.11
L2_HIT%=1.41
751 LLC_H'T“=41.11 Cost Of Ioad
so) STiEREORETIY atenc
LLC_MISS%=14.11 Where are loads satisfied? y
25 1
0.0 AL - . - - .
A N

N A Rk, 5 BN NS LALN R R0 LA '» ST O T @A 0 P K
E R IR RPN LRI SR C S gg{g A ROV

Offset

H

Utilizing PEBS Triggering on Non-Precise Events

Line Selectiorns (viss.svs, sirecam Q)

CMe HASWELL_HIGH_LATENCY_INSTRUCTION=67% L 45.0 428
425 ATOMIS_INSTRUCTION=8% | uzs
HASWELL_HIGH_LATENCY_INSTRUCTION=8% : 40.0
40.0 CPI=1.69 400 e
=1 o y=J o - p=1
37.5 =y] | 27.8 as.0
35.0 t as.o % 325
32.5 1 T
NPEBS tags to correct IP cad 200 "=
20.0 F20.0 |
N 0
g 278 SPIKE 1 (s{BUES) 275 Mo M
2 250 HASWEL GH__LATENCY_I RUCTIOMN=100% 25.0 § o=
] 225
g 225 225 = | 200 %
= 200 20.0 1 o
17.5 17s =17 x
15.0 L 150 E 150 £
125 125 ' [1252
10.0 100 2 | 100 2
7.5 7.5 75
50 A .0 56
2s L LLQ l2s 2.5
0.0 }L / A 0.0 oo
R s Ly = =~ 52 o = o 252 AN 25
SR UL ORI TS S R S R
Offsat
[cloektickssaHASWELLY — INST_RETIRED. TOLAL_CYCLES_PS%(HASWELL) — UOPS_RETIRED. TOTAL_GCYCGLES_PS%(HASWELL) |
Selection Granularky

HtCourk | Clockticks™(HASWELL) | INST_RETIRED TOTAL_CYCLES_FS%(HASWELL) | LIOPS_RETIRED, TOTAL_CYCLES_PSTHHASWELL) |

17 [.79 TS

17000025 5.47 0.00 2.00

17000025 0.00] .45 0.2

031 0.00 0.00

0,00 0.00 2.00

BE DY e wboe, wo g] 0.00 043 0.5

EB B3 AA FF FF (g2l 18450, | 1 calls 0.43] 0.80] 1.23

J0F 31 Jokzs] 24 HASWELL_HIGH_LATENCY L., 24 mestamp 2,08 .72 WS

4BBIEDFF |and rax, IFHTTITEN 4_timestamg EX) 0.68 0.5
ECIEZI0 [shirds, 20 _timestamp 0.6z 271

ot race, rdx i]

Conclusions

Shifting toward definitive ways to debug performance

» Need tools help to ensure this is all automated and to help innovate

LBRs are now complemented with timing

» Get exact timing to nanosecond granularity

Intel Processor Trace is Augmenting LBRs

» Being used for advanced debug

Precise Event Based Sampling is being utilized on non-precise events

» Allows for an extremely cheap methodology to collect events without
performance monitoring interrupts and allows for better tagging of issues

H

