
Intel Confidential — Do Not Forward

Zen and the Art of Performance Monitoring
Michael Chynoweth - Sr. Principal Engineer Intel Corporation

Contributors: Joe Olivas, Patrick Konsor, Rajshree Chabukswar, Seth Abraham, Stas

Bratanov

2

Agenda

• End in Mind

• Show some of the innovations we have in performance monitoring

• Demonstrate how those advancements resolve problem with examples

• Topic1: Delivering definitive paths to debug across all architectures

• Top Down and how it helps avoid pitfalls

• Topic2: Determining paths of execution, call stacks and timing

• Topic3: Large amounts of data, small timeframe, small perturbance or blind

spots

Topic1: Delivering Definitive Paths to Debug Power and Performance

• The Lines Between Segments is Blurring

• Customers ask for training on all segments Quark®, Atom®, Core® and Xeon®

• Problem = Performance monitoring unit features are designed by experts

• Without a clear optimization path, our customers will get on “tangents”

• Example: Customer was concentrating on memory ordering “Nukes” as part of their

performance analysis (Using Top Down we found Nukes were 0.3% of execution)

Customers Should Be Pointed by Our Methodology and Tools Exactly Where to Look

Memory Ordering
“Fluffy, Harmless, Rainbow-Colored Bunnies”

Memory Ordering
“Nukes”

Sponsored by SSG & CCG

Intel® Confidential — INTERNAL USE ONLY

Defining One Starting Point For Core, Uncore and
Power Across All SoCs

Start Using Scalable, Consistent and Converged Methodologies

Quark® Atom® Core® Xeon Phi®

Allow technologies that
can scale down to
Quark

Start of single run to debug

At high level

One run, to get higher level
and allow for debugging
further

Examples:

Core = Top Down

UnCore = Memory

Power = Energy MSRs

Consistent Methodologies to Avoid Tangents:

Example = Top Down Methodology for Debugging CPU Bottlenecks

Top Down breaks the pipeline into 4 categories
 Front End Bound = Bound in Instruction Fetch -> Decode (Instruction Cache, ITLB)

 Back End Bound = Bound in Execute -> Commit (Example = Execute, load latency)

 Bad Speculation = When pipeline incorrectly predicts execution (Example branch

mispredict memory ordering nuke)

 Retiring = Pipeline is retiring uops

Fetch Decode Execute CommitMemory

Front End Back End

Pipelines

Instruction Fetch

IF1 IF2 IF3

Allocate

Rename

AR1 AR2 RSV

sched

Data Cache

AG DC1 DC2

EX

Execute Retire

RB1 RB2 RB3 RB4

Commit

Instruction Decode

ID1 ID2 ID3

RSV

sched

10 cycle mispredict

Front End

Back End

Event NO_ALLOC_CYCLES.NOT_DELIVERED counts when BackEnd
requests UOPs and FrontEnd Cannot Deliver

MSROM

Why Do We Use Top Down to Drive Looking

at Other Events?
Stats BayTrail Calculation

Cycles Per Instruction (CPI) 2.9 CPU_CLK_UNHALTED.CORE/INST_RETIRED.ANY

Front End Bound Cost 0.1% NO_ALLOC_CYCLES.NOT_DELIVERED*1/CPU_CLK_UNHALTED.CORE

Microcode Sequencer Entry Cost 57.0% MS_DECODED.MS_ENTRY*5/CPU_CLK_UNHALTED.CORE

MSUOPS/UOP_RETIRED 65% UOPS_RETIRED.MS/UOPS_RETIRED.ALL

Microcode Sequencer Entry Cost is 57% of all cycles?! Should I raise the alarm?

Hint

When Would the Microcode Sequencer Matter?

Stats BayTrail Minimized
Baytrail

Calculation

Cycles Per Instruction (CPI) 2.9 4.6 CPU_CLK_UNHALTED.CORE/INST_RETIRED.ANY

Front End Bound Cost 0.1% 63.6% NO_ALLOC_CYCLES.NOT_DELIVERED*1/CPU_CLK_UNHALTED.CORE

Microcode Sequencer Entry Cost 57.0% 41.4% MS_DECODED.MS_ENTRY*5/CPU_CLK_UNHALTED.CORE

FE 64% of all cycles!

2x MS issues explain ~97% FE

bottleneck

Looking at just events is dangerous.

Even though MS Entry cost is 57% of all

cycles we know that it is not impacting

performance!

When Would the Microcode Sequencer Matter?

Stats BayTrail Minimized
Baytrail

Calculation

Cycles Per Instruction (CPI) 2.9 4.6 CPU_CLK_UNHALTED.CORE/INST_RETIRED.ANY

Front End Bound Cost 0.1% 63.6% NO_ALLOC_CYCLES.NOT_DELIVERED*1/CPU_CLK_UNHALTED.CORE

Microcode Sequencer 1/2 Speed Cost 0.0% 20.5% UOPS_RETIRED.MS/(2*CPU_CLK_UNHALTED.CORE)

Microcode Sequencer Entry Cost 57.0% 41.4% MS_DECODED.MS_ENTRY*5/CPU_CLK_UNHALTED.CORE

Now we have explained ~62%

of all front end bound cycles

explained

Top Down Let Us Identify Items We Did Not Understand

Where Is It Going?: Would Like to Better Tag

Indirect Impacts with Top Down
Atom GFX 640 MHz 1360 1600 2000 2400 2560 Entire Data Set

Atom (GFX Enabled) FPS 96.06 106.21 120.35 132.4 137.5 1.43

Perfect Frequency
Scaling

1.18 1.25 1.20 1.07 1.88

Actual Scaling 1.11 1.13 1.10 1.04 1.43

Frequency_Dep% 60% 53% 50% 58% 49%

Non_Frequency_Dep% 40% 47% 50% 42% 51%

Module_Name HotThread% CPI OBSERVATIONS Issue_Summary

Benchmark.exe:
Benchmark.exe

65.80% 2.89 Retiring=19.44:FrontEnd=23.3:
BackEnd&BadSpec=57.27:

L2_MISS=19%_D:ICACHEMISSES=10%_D

Benchmark.exe:
igd10iumd32.dll

13.11% 4.15 Retiring=13.07:FrontEnd=64.55:Bac
kEnd&BadSpec=22.37:

ICACHEMISSES=34%_D:ITLB_MISSES=8%:L2_
MISS=10%_D:

Benchmark binary has a large data cache footprint

Graphics Driver has a large instruction cache footprint

Graphics Driver and Benchmark Binary Battle Over Instruction + Data Real Estate

Latency to Memory Causing Problems

11

What Are The Last Branch Records?

LBR Overview:

• LBRs dynamically track the last N taken branches:

• N can now traverse from 8 to 32 taken branches

• LBRs can be filtered for types of branches

• How are they used today?

• Use them to recreate paths of execution

• Assist in obtaining basic block hit counts

• Used to weight cost of all

• Paths of execution (function, branch, module)

• Compilers are starting to use them for profile guided feedback

• Example = AutoFDO

• Most Recent

• Call stacks to any point of interest with LBR call stack

• Cycle count

Pay attention, this one

is brand new

LBR is Utilized to Recreate Hot Path of Execution

LBR Allows Visibility of Complete Transaction

Allocations Exception

Handling

Calc Cleanup

Branch

Stats

13

How Does Adding Timing Help?

TBB uses fixed spin of 80 on pause

What is Intel® Processor Trace?
Intel® Processor Trace (Intel® PT) is a hardware feature that logs information about software execution with

minimal impact to system execution

Supports control flow tracing with <5% overhead

 Decoder can determine exact flow of software execution from trace log

Can store both cycle count and timestamp information

14

Sponsored by SSG & CCG

Intel® Confidential — INTERNAL USE ONLY
15

Intel Processor Trace is Delivering New Capabilities

Determining Contention on a Lock:
RETRY_LOCK = 10564
GOT_LOCK = 43542
10564/(43542 + 10564) = 0.1952 (or 20% contended)

Zooming at Microsecond Granularities

Interrupt showing up immediately after

a conditional jump in memset call

Aha! It is a Device Not Available

Due to touching XMM registers

Traverses tons

of code

RTIT Was Up and Running in Weeks…Because It is a Trace-Based Technology

Locking Debug

Exceptions Hurting Performance

16

SoC Sizing using Modeling with Instruction Traces

• Model Icache, ITLB, and pre-decode

in software, with a range of sizes and configs

• Simulate over traces from target workloads

• Instruction traces quick to capture

• And (relatively) quick to simulate

• Enables easy estimation of cache behavior for a given workload

• Accurate within a few percentage points for Icache, ITLB, and pre-decode

• Enables evaluation of different cache configs across a range of workloads

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

0 16384 32768 49152 65536 81920 98304 114688 131072

Instruction Cache Miss Rate

1-way 2-way 4-way 8-way

Intel Processor Trace Allows Modeling of Instruction Cache

Precise Events Are Incredibly Useful

Precise Events Collect Eventing IP, Registers, Data Linear Address (some) and Do

NOT Require and Performance Monitoring Interrupt to Collect

Cost of load

latencyWhere are loads satisfied?

Utilizing PEBS Triggering on Non-Precise Events

Capability to Collect PEBS on Non-Precise Events Allows For Less Overhead,

Better IP Tagging and Works When Interrupts Masked

19

Conclusions

• Shifting toward definitive ways to debug performance

• Need tools help to ensure this is all automated and to help innovate

• LBRs are now complemented with timing

• Get exact timing to nanosecond granularity

• Intel Processor Trace is Augmenting LBRs

• Being used for advanced debug

• Precise Event Based Sampling is being utilized on non-precise events

• Allows for an extremely cheap methodology to collect events without

performance monitoring interrupts and allows for better tagging of issues

