
Paradyn Project

Scalable Tools Workshop

Granlibakken, California

August 2016

Random and Exhaustive Testing of

Instruction Parsers

Nathan Jay

Motivation

Lots of tools parse binaries

2Instruction Parser Testing

GNU

Motivation

Parsers rely on a disassembly step:

Converting object code into a higher-level language with semantic

information

3Instruction Parser Testing

Hex

00: 55

01: 48 89 e5

04: 89 7d fc

07: 8b 45 fc

0a: 83 c0 0a

0d: 0f af 45 fc

11: 5d

12: c3

Assembly

push %rbp

mov %rsp, %rbp

mov %edi, -0x4(%rbp)

mov –x4(%rbp), %eax

add $0xa, %eax

imul –x04(%rpb), %eax

pop %rbp

retq

Motivation

Converting object code to assembly is

easy for a single format, like this from

ARMv8:

4Instruction Parser Testing

Compare and branch (immediate)

No single format is difficult to decode. Just extract the fields

and translate binary to assembly for each field.

Size field

Operation

Immediate

Source Register

Dest. Register

Condition

Fixed Value

Size field

Operation

Immediate

Source Register

Dest. Register

Condition

Fixed Value

Motivation

Unfortunately, the format varies between

instructions.

5Instruction Parser Testing

Compare and branch (immediate)

Conditional branch (immediate)

Test and branch (immediate)

Motivation

And there are a lot of formats:

6Instruction Parser Testing

Size field

Operation

Immediate

Source Register

Dest. Register

Condition

Fixed Value

Motivation

These formats only partially cover:

o load/store

o branching

The manual specifies more than 5 times as many different,

general formats.

ARM can vary between implementations:

Apple, Samsung, AMD, Nvidia, Broadcom, Applied Micro, Huawei,

Cavium…

7Instruction Parser Testing

Motivation

x86 has other challenges with variable length instructions.

This format works for some 1 or 2 byte opcodes:

There is another format for some 3 byte opcodes:

This is less than a 3rd of byte level maps, and there are bit

level maps as well.

8Instruction Parser Testing

Prefixes opcode mod

R/M

SIB displacement immediate

Seg, Rep, Lock, 66, 67

REX

0F XX * * 0, 1, 2 or 4 byte value 0, 1, 2 or 4 byte value

Prefixes opcode mod

R/M

SIB displacement imm

Seg, Rep, Lock, 66, 67

REX

0F * XX * * 0, 1, 2 or 4 byte value byte

Motivation

Moreover, instruction sets change over time:

9Instruction Parser Testing

x86 Extensions

NPX (x87) 1977

MMX 1997

SSE 1999

SSE2 2000

SSE3 2004

SSSE3 2006

SSE4 2007

AVX 2008

AVX2 2011

AVX512 2013

MPX 2013

1977 – 1996: Additions made in

80186, 80286, 80386, 80387.AMD

releases first x86 processor, K-5.
1997 – 1999: Additions made in

Pentium MMX, Pentium Pro, AMD

MMX+ and Intel EMMX1999: AMD adds 3DNow! And 2

separate additions to 3DNow!+

2005: Intel adds virtualization

2006: AMD adds virtualization2007-2008: AMD adds SSE4a in

Phenom Intel adds SSE4.2 in

Nehalem2008-2010: Intel adds SHA.

AMD deprecates 3DNow!2013: Intel and AMD both

support BMI1, disagree on what’s

included. Intel supports BMI 2

2015: AMD supports BMI 2,

Intel adds AES support

Goals

o Find disassembler errors

o Test enormous instruction space quickly

o Consolidate duplicate reports of an error

o Avoid instruction set specifics

o Work for multiple instruction sets

o Don’t rely on specific instruction set versions

o Work with any disassembler

10Instruction Parser Testing

Previous Work

Some past efforts:

o Comparison of disassembly and execution results, Ormandy 2008

o Generate instructions randomly or by brute force

o Disassemble instructions, execute instructions and compare results

o Generation of known valid or invalid x86 prefixes and opcodes,

Seidel 2014

o Start with empty string of bytes

o Use look up tables for next valid byte to build instruction, byte-by-byte

o Arbitrary values can be appended after opcode

o N-version differential disassembly, Paleari et. al 2010

12Instruction Parser Testing

Previous Work – Paleari et. al 2010

Input:

o Randomized bytes (40,000 sequences used)

o CPU-tested instructions (20,000 sequences picked at random)

o Enumerate all possible 1, 2 and 3 byte sequences

o Execute each byte sequence with a few operands

o Prepend a few prefixes to each sequence

Test:

o Compare 8 disassemblers’ outputs and execution results

o Remove disassembly output that conflicts with execution in:

o Instruction length

o Operand type

o Declare the most common output to be correct

13Instruction Parser Testing

Previous Work - Limitations

o Naïve input generation

o Randomly choosing instructions inefficiently tests whole space

o A brute force approach would require 2120 instructions

o Required expert knowledge of x86

o Semantic specification for decoding to compare to execution

o List of all valid bytes, prefixes, knowledge of operand position

o Relied on details of the ISA

o Opcode length and position

o Byte boundaries

o No means to coalesce similar error reports

14Instruction Parser Testing

Approach

o Generate instructions more effectively

o Avoid repetitions of similar instructions

o Cover instruction space more thoroughly than purely random

within a reasonable timeframe

o Test all functional parts of instructions

o Avoid ISA dependencies and expert knowledge

15Instruction Parser Testing

Workflow

16Instruction Parser Testing

Input Generation

Disassembler 1

Normalize 1 Normalize n

…

Differential Disassembly

Comparison & Filtering

Reassembly

Disassembler n

…

Analysis

Create object code to disassemble

Disassemble object code with each

disassembler and normalize results to

uniform representation

Compare disassembled code and

suppress duplicate differences

Reassemble output, looking for

differences with object code

Determine which disassembly is

correct

Workflow – Current State

17Instruction Parser Testing

Input Generation

Disassembler 1

Normalize 1 Normalize n

…

Differential Disassembly

Comparison & Filtering

Reassembly

Disassembler n

…

Analysis

Generalized, works for x86 and

ARMv8. PPC64 lacks some register

info

Differential disassembly tested on all

“In-progress” decoders.

Normalization ongoing in each.

Generalized, works for x86, PPC64

and ARMv8. PPC64 lacks register

info.

Primitive support for x86 and

ARMv8

Preliminary results on x86 and

ARMv8 outputs

Workflow – Current State

18Instruction Parser Testing

Input Generation

Disassembler 1

Normalize 1 Normalize n

…

Differential Disassembly

Comparison & Filtering

Reassembly

Disassembler n

…

Analysis

Generalized, works for x86 and

ARMv8. PPC64 lacks some register

info

Differential disassembly tested on all

“In-progress” decoders.

Normalization ongoing in each.

Generalized, works for x86, PPC64

and ARMv8. PPC64 lacks register

info.

Primitive support for x86 and

ARMv8

Preliminary results on x86 and

ARMv8 outputs

Input Generation – Observations

19Instruction Parser Testing

o Naïve brute force is too slow

o x86 instructions are up to 15 bytes long

o There are much less than 2120 significantly different

instructions

o Many instructions differ only slightly

o Immediate values do not change meaning or decoding of

instructions

o Registers names (usually) do not change meaning or decoding

of instructions

1011 0100 1101 1111 mov $0xdf, %ah

1011 0100 0101 1111 mov $0x5f, %ah

1011 0110 1101 1111 mov $0xdf, %dh

1011 1100 1101 1111 movsbb (%rsi), (%rdi)

Input Generation – Observations

21Instruction Parser Testing

Not all bits flips are equally interesting, so can we find those

that are most interesting?

Disassemblers are likely to decode similar instructions all

correctly or all incorrectly.

Decoded InstructionBinary Code

Input Generation – Observations

Goal: Find and ignore bits that encode only register names

or immediate values.

22Instruction Parser Testing

We can identify 11 of 16 bits that will not be interesting to

vary

mov $0xdf, %ah:

1011 0100 1101 1111

Input Generation

Differential Disassembly

23

Seed Work Queue

Map Instruction (each decoder)

Generate Insns (each decoder)

Queue New Insns

Queue

Empty?
Done!

Add some random byte strings

to the queue

Check if there are more

instructions to evaluate

Find interesting bits to vary for

new instructions

Flip interesting bits to create

instructions

Add new instructions to the

queue

Producing a Map of Interesting Instruction Bits

24Instruction Parser Testing

Map: *

Base Bits: 1011 0100 1101 1111

New Bits: 0011 0100 1101 1111

Base Insn: mov $0xdf, %ah

New Insn: xor $0xdf, %al

Producing a Map of Interesting Instruction Bits

25Instruction Parser Testing

Map: **

Base Bits: 1011 0100 1101 1111

New Bits: 0111 0100 1101 1111

Base Insn: mov $0xdf, %ah

New Insn: hlt

Producing a Map of Interesting Instruction Bits

26Instruction Parser Testing

Map: ***

Base Bits: 1011 0100 1101 1111

New Bits: 1001 0100 1101 1111

Base Insn: mov $0xdf, %ah

New Insn: xchg %eax, %esp

Producing a Map of Interesting Instruction Bits

27Instruction Parser Testing

Map: ****

Base Bits: 1011 0100 1101 1111

New Bits: 1010 0100 1101 1111

Base Insn: mov $0xdf, %ah

New Insn: movsbb (%rsi), (%rdi)

Producing a Map of Interesting Instruction Bits

28Instruction Parser Testing

Map: **** *

Base Bits: 1011 0100 1101 1111

New Bits: 1011 1100 1101 1111

Base Insn: mov $0xdf, %ah

New Insn: mov $0x6d5f5…, %esp

Producing a Map of Interesting Instruction Bits

29Instruction Parser Testing

Map: **** *2

Base Bits: 1011 0100 1101 1111

New Bits: 1011 0000 1101 1111

Base Insn: mov $0xdf, %ah

New Insn: mov $0xdf, %al

Producing a Map of Interesting Instruction Bits

30Instruction Parser Testing

Map: **** *22

Base Bits: 1011 0100 1101 1111

New Bits: 1011 0110 1101 1111

Base Insn: mov $0xdf, %ah

New Insn: mov $0xdf, %dh

Producing a Map of Interesting Instruction Bits

31Instruction Parser Testing

Map: **** *222

Base Bits: 1011 0100 1101 1111

New Bits: 1011 0101 1101 1111

Base Insn: mov $0xdf, %ah

New Insn: mov $0xdf, %ch

Producing a Map of Interesting Instruction Bits

32Instruction Parser Testing

Map: **** *222 1

Base Bits: 1011 0100 1101 1111

New Bits: 1011 0100 0101 1111

Base Insn: mov $0xdf, %ah

New Insn: mov $0x5f, %ah

The changed value 5f has the same binary representation

as the new bits, 0101 1111, is a multiple of 8 bits, and

occurs on a byte boundary, so we mark the next 8 bits

Producing a Map of Interesting Instruction Bits

33Instruction Parser Testing

Map: **** *222 1111 1111

Base Bits: 1011 0100 1101 1111

New Bits: 1011 0100 1101 1111

Base Insn: mov $0xdf, %ah

New Insn: mov $0x5f, %ah

All bits after the decoded instruction length will be marked

unused with a ‘U’.

Refining the Map

Sometimes, even a single field change is interesting

34Instruction Parser Testing

83FE39 cmp $0x39, %esi

Bytes Instruction

81FE39 cmp $0x7c312d39, %esi2D317C

The number of fields changed is an insufficient criterion for

detecting interesting bits.

We can re-map the changed instruction to learn structural

information and find more interesting changes.

Length

24 bits

48 bits

Insn: mov $0xdf, %ah

Map: **** *222 1111 1111

Input Generation – Making the Next Insns

We have a map, so how should we generate new

instructions?

We know that only 5 bits produced interesting changes:

35Instruction Parser Testing

We generate all sequences with every combination of 1 or

2 highlighted bits flipped.

Input Generation – Queueing New Insns

Issue: We do not want to re-evaluate redundant

instructions

o The last instruction is only 1 or 2 bit flips away, so we could go

right back if we do not record what we have tested

Solution: We record instruction templates, which are:

o Generic forms of an instruction based on opcode and operand

types

o Identical for trivially different instructions

o Different for interestingly different instructions

36Instruction Parser Testing

Input Generation – Queueing New Insns

To make a template:

o Replace immediates with generic symbols:

o Replace registers with generic names:

Templates coalesce instruction records, but require

knowledge of register sets

37Instruction Parser Testing

Base Insn: mov $0xdf, %ah

Template: mov $0x, %ah

Base Insn: mov $0xdf, %ah

Template: mov $0x, %gp_8bit

Input Generation - Summary

o We generate test input using only the given decoders

o We don’t rely on a single decoder to be correct

o We reduce input redundancy

o Our process does not heavily rely on a specific ISAs:

o Opcode/operand placement doesn’t matter

o Byte order doesn’t matter

o Instruction length doesn’t matter

o Unfortunately, we rely on register set information for

templates.

38Instruction Parser Testing

Workflow

39Instruction Parser Testing

Input Generation

Disassembler 1

Normalize 1 Normalize n

…

Differential Disassembly

Comparison & Filtering

Reassembly

Disassembler n

…

Analysis

Create object code to disassemble

Disassemble object code with each

disassembler and normalize results to

uniform representation

Compare disassembled code and

suppress duplicate differences

Reassemble output, looking for

differences with object code

Determine which disassembly is

correct

Differential Decoding

Goal: Compare results of multiple decoders to detect

errors.

Caveats:

o Disassemblers can produce slightly different output for

semantically identical instructions

o We do not assign correctness at this stage

o We do not rely on any disassembler to be correct

40Instruction Parser Testing

Differential Decoding – Normalization

Challenge: Decoders vary even for equivalent output.

Some differences are trivial:

o Spacing

o Comments

o Immediate base (hex vs. decimal)

We handle those differences first with a few generic

normalization steps applied to all decoders.

41Instruction Parser Testing

Differential Decoding – Normalization

Other differences are a bit more complex:

42Instruction Parser Testing

Differ in:

o Equivalent opcodes that can affect operand encoding

o Operand padding (zero ext. vs. sign ext.)

o Implicit operands

These differences may require decoder-specific

normalization.

XED: fisttpw %st0, -0x79c72fc5(%rcx)

GNU: fisttp -0x79c72fc5(%rcx)

LLVM: movn x5, #0x97fc, lsl #16

GNU: mov x5, #0xffffffff6803ffff

Workflow

43Instruction Parser Testing

Input Generation

Disassembler 1

Normalize 1 Normalize n

…

Differential Disassembly

Comparison & Filtering

Reassembly

Disassembler n

…

Analysis

Create object code to disassemble

Disassemble object code with each

disassembler and normalize results to

uniform representation

Compare disassembled code and

suppress duplicate differences

Reassemble output, looking for

differences with object code

Determine which disassembly is

correct

Comparison and Filtering

Comparison and filtering works by:

o Automatically checking aliases

o Some register names are known aliases, and both are valid, so

their difference should not be recorded.

o Producing templates

o Each decoder output is made into a template

o Examining past templates

o If the current combination of templates has been seen already,

do not issue another report

o Recording this combination of templates

44Instruction Parser Testing

Workflow

45Instruction Parser Testing

Input Generation

Disassembler 1

Normalize 1 Normalize n

…

Differential Disassembly

Comparison & Filtering

Reassembly

Disassembler n

…

Analysis

Create object code to disassemble

Disassemble object code with each

disassembler and normalize results to

uniform representation

Compare disassembled code and

suppress duplicate differences

Reassemble output, looking for

differences with object code

Determine which disassembly is

correct

Reassembly

Goal: We want to minimize the expert ISA knowledge

needed during previous steps, which includes:

o Equivalent opcodes

o Equivalent register names

o Named constants

o Implicit operands

Solution: Learn aliases and implicit operands through

reassembly

46Instruction Parser Testing

Reassembly

We can learn these parts by analyzing the output of

reassembly.

o If decodings reassemble to the same bytes, they are equivalent

and any different fields are likely aliases

o If decodings reassemble differently, they could have:

o Ignored prefixes

o Unused bits

o An error

o If reassembly produces an error, either the decoder or the

assembler is wrong

47Instruction Parser Testing

Workflow

48Instruction Parser Testing

Input Generation

Disassembler 1

Normalize 1 Normalize n

…

Differential Disassembly

Comparison & Filtering

Reassembly

Disassembler n

…

Analysis

Create object code to disassemble

Disassemble object code with each

disassembler and normalize results to

uniform representation

Compare disassembled code and

suppress duplicate differences

Reassemble output, looking for

differences with object code

Determine which disassembly is

correct

Analysis

Manually examining differences allows us to:

o Verify correctness with ISA manual

o Execute instructions and compare processor state

o Logically group reported differences

Tradeoff:

Requires human involvement and significant time, but

verifies correctness as thoroughly as necessary.

49Instruction Parser Testing

Results – x86 (Dyninst, GNU, XED)

Although normalization is incomplete, we have been able to

test Dyninst against other decoders and found issues with:

o Invalid instruction handling

o Asserts halted execution instead of returning an error

o Ignoring REX prefixes when computing operand size

o Decoding illegal instructions with lock prefixes as legal

o Opcodes, including:

o Failure to translate XCHG to NOP in certain conditions

o Missing decoding data for certain SHL instructions

o Incorrectly marking valid instructions as invalid involving at

least half a dozen opcodes.

50Instruction Parser Testing

Results – ARMv8 (Dyninst, GNU, LLVM)

Testing was done during development of Dyninst ARMv8

support and highlighted:

o Issues recognizing invalid instructions

o Found multiple asserts and segmentation faults

o Incorrect sign and zero extension

o Offset operand decoding (some are divided by 2 or 4)

o Special operand formatting (implicit adds, inversions)

o Failure to change operands for aliases

o Incorrect opcode aliasing in several opcodes including

o MOV, SBFIZ, SBFIX, ORR, …

51Instruction Parser Testing

Results – ARMv8 (Dyninst, GNU, LLVM)

GNU Issues

o Incorrectly aliases ORR,

changing semantics

o Decodes invalid LD1R, LD2R,

LD3R and LD4R instructions

as valid, ignoring a reserved

bit

o Decodes invalid 16-bit floating

point registers, affects nearly

50 opcodes.

LLVM Issues

o Aliasing to invalid BFC

instruction from semantic

equivalent

o Inconsistent enforcement of

“Should Be Zero” and

“Should Be One” constraints

across more than a dozen

opcodes

52Instruction Parser Testing

Results – ARMv8 (Dyninst, GNU, LLVM)

Three scenarios were compared to test input generation:

o Random

o 300 million decoded instructions

o 50 minutes

o Brute Force

o 12 billion decoded instructions (4 billion per decoder)

oDistributed over 32 jobs from total 48 hours elapsed time

o Mapped (the method presented here)

o 75 million decoded instructions (includes mapping steps)

o 8 minutes

53Instruction Parser Testing

Results – ARMv8 (Dyninst, GNU, LLVM)

54Instruction Parser Testing

0

100

200

300

400

500

600

700

0 250 485

N
u
m

b
e
r

o
f
O

p
co

d
e
s

Time (s)

Opcodes Seen During Test

Map Random Full Coverage

Results – ARMv8 (Dyninst, GNU, LLVM)

Mapped input generation terminated after 8 minutes

because the work queue was emptied and no new

templates were found

A brute force test of every 4-byte binary string revealed

665 opcodes.

55Instruction Parser Testing

Time Random Mapped

8 Minutes 649 opcodes 655 opcodes (done)

50 Minutes 652 opcodes 655 opcodes

Results – ARMv8 (Dyninst, GNU, LLVM)

Missed by Mapped Input

o MOVN, MOVZ

o Aliased by MOV, these opcodes

only appear with a few specific

values for a 16-bit imm.

o CASP

o Has many variants like CASPL,

CASPAL, CASPA seen by both

o BLR

o 27 bits fixed

o DCPS, DRPS , ERET

o Exactly one 32-bit encoding

Missed by Random Input

o DSB, DMB, ESB, PSB

o Various synchronization

barriers, each with 28 bits fixed

(less than 1 in 100 million)

o CLREX

o Again, 28 bits fixed

o NOP, SEV, SEVL, WFE, WFI,

YIELD

o Exactly one 32-bit encoding

56Instruction Parser Testing

Ongoing Work

Input generation:

o Test special register values (all 0s, all 1s)

o Detect and vary opcode bits

Normalization:

o x86 and PPC have major normalization issues left

Differential Disassembly:

o Consider comparing internal semantic representations

Reassembly:

o Use error messages to help find decoder errors

Include new decoders – each one tests our assumptions

57Instruction Parser Testing

Our framework, Fleece is available at:

https://github.com/dyninst/tools/tree/master/fleece

58Instruction Parser Testing

https://github.com/dyninst/tools/tree/master/fleece

