
Register Availability Analysis in Support of
Instrumentation of GPU Kernels

Hsuan-Heng Wu
hwu337@wisc.edu

Barton P. Miller
bart@cs.wisc.edu

Computer Sciences Department
University of Wisconsin-Madison

1210 W. Dayton St.
Madison, WI 53706

1 Mo va on

Binary code instrumenta on is used in a wide range of applica ons, including performance analysis
[ABF10,MCC95,SM06], debugging [AAS07], so ware reliability [LSR14], and security
[FMK12,JBW14,OAK11]. Instrumenta on of binary code is a cri cal capability in these applica ons
because it does not require source code to be available and targets the actual so ware ar fact that is
executed.

A challenge of instrumen ng binary code is having sufficient resources (such as free registers or
memory), to save and restore processor state around the instrumenta on code so that the behavior of
the underlying applica on code is not affected, and to record instrumenta on data. Compared to binary
instrumenta on of CPU code [ES95,LCM05,MP16,NS07 ,BA04], some proper es of the GPU execu on
model prevent us from directly applying the conven onal CPU binary instrumenta on approaches on
GPU binaries:

1. Compared to CPU programs having access to a general purpose stack and heap, GPU programs
are not guaranteed access to these memories, which are useful for register spilling and
recording instrumenta on data.

2. Compared to CPU programs that can make use of all architecturally available registers, GPU
programs are launched with the minimal number of registers required, so that the more threads
can run in parallel on the hardware. This means that there will be fewer registers available for
instrumenta on, and the instrumenta on needs to be aware of register alloca on to be
efficient.

3. The problem worsens when a GPU program tries to use all architecturally available registers, as
now we will not be able to trade efficiency for feasibility by asking for more registers to be used
to launch the GPU program.

From our informal discussions with GPU vendors, GPU library teams, and applica on groups, there is the
widely held belief that there are GPU codes that frequently use all the available registers in the
applica on code, leaving none available for instrumenta on code. The most commonly men oned
worst-case kernels are the hardware-op mized machine learning libraries provided by vendors such as

1

cuDnn [CWV14] for NVIDIA GPUs wri en in CUDA [NBG08] and MIOpen [KFT20] for AMD GPUs wri en
in HIP [BCC21]. In these libraries, it is not uncommon to see GPU kernels declaring the use of all
available registers, making it impossible to claim addi onal registers for instrumenta on purposes.

As we will demonstrate in later sec ons, the solu ons to these issues are actually intertwined: We need
enough registers to hold loca on informa on of a stack and a heap, and access to stack and heap allows
us to free up more registers and use them for instrumenta on. Throughout this paper, our goal of
enabling stack and heap access to GPU programs will be referred to as conven onal instrumenta on , as
these accesses will enable us to adopt most if not all instrumenta on solu ons from the long-developed
world of CPU binary instrumenta on.

This paper describes our analysis of the register requirements to support conven onal instrumenta on,
and our inves ga on of the actual register use for a highly demanding library running on the AMD GPU
pla orm. Careful analysis of these kernels reveals that there is almost always sufficient minimum
register availability at every instruc on in every kernel. In fact, there are o en more than the minimum
available at many instruc ons, allowing instrumenta on without any required register spilling. The
significance of this result is that fine grained binary code instrumenta on of these GPU kernels is
prac cal in almost all cases.

There are a few simple ways in which we can measure register usage in a GPU kernel. For example, in an
AMD GPU binary, we have the following three types of register usage informa on obtainable through a
simple scan of the GPU applica on kernel.

1. Registers Allocated: GPU registers are allocated in units of 8 or 16. For each kernel, there exists a
field in the kernel’s header specifying the number of registers to be allocated at run me.

2. Register Usage Declared: In the .note sec on of the kernel’s header, there exists a field
specifying the number of registers actually used in the kernel. which should be no greater than
the amount of register allocated.

3. Registers Explicitly Used: For each instruc on, we can decode its operands, checking which
registers are used to get an accurate measure of register usage.

We first observed that the above measures o en over approximate the number of registers being used.
Not all instruc ons (or even basic blocks or func ons) use all registers. And while the above techniques
can tell you cumula vely which registers are being used, they cannot tell you, at any given point in the
code, which registers might be free. To produce such per-instruc on free register informa on, we use a
liveness analysis [K71] of the binary code. Those registers that are not in use by the applica on code can
be used by the instrumenta on code. The liveness informa on requires a control and dataflow analysis
of the code to produce a conserva ve es mate of which registers are in use. In this case, conserva ve
means that no register is ever marked as live if it contains data that might be again used by the
applica on.

In this paper, we study the scalar and vector register availability for the 738 kernels in the MIOpen
library using a variety of measures, including the free, explicitly used, and allocated registers. We
leverage the Dyninst binary analysis and instrumenta on toolkit [BK00,HMC94,MP16] to create a tool

2

that can perform the control flow, dataflow, and liveness analysis of the MIOpen GPU kernels on the
AMD GFX908, GFX90A and GFX940 architectures.

Our findings show that free registers are available at almost all instruc ons in these kernels,
demonstra ng the feasibility of instrumen ng these highly-op mized GPU library kernels with no
addi onal register requirements. We go to show a variety of effec ve techniques for genera ng
instrumenta on of GPU kernels on the register resource availability at that site.

Our main results are as follows:

● The informa on contained in GPU executable headers is overly conserva ve by a large margin
(Sec on 3).

● For instrumenta on needs, either enough registers are globally available or register alloca ons
can be increased in 99% of the kernels on the GFX908, GFX90A, and 95% on the GFX940
processors (Sec on 3)

● Register available can be increased to accommodate any instrumenta on needed by a variety of
register spilling techniques (Sec on 4).

● In cases where there are insufficient global registers available to meet the minimal needs,
globally needed values for instrumenta on can be moved from register to register based on our
Sliding Tile Puzzle algorithm. This technique increases the percentage of kernels that we can
instrument to 100% of the kernels on the GFX908, GFX90A, GFX940 processors (Sec on 5)

2 Background
Our instrumenta on strategies provide a founda on for the later sec ons of this paper. The GPU
programming and execu on model and registers play an important role in the GPU binary
instrumenta on, resul ng in differences between global versus local register requirements for
instrumenta on. In this sec on, we describe each of these.

2.1 Execu on model

With the Single Instruc on Mul ple Thread (SIMT) execu on model, a GPU kernel program describes
how a thread should execute, and the host decides how many threads are associated with the execu on
of this kernel. The threads are launched as a grid of workgroups, where the programmer determines the
number of workgroups within a grid, and the number of threads within a workgroup. Threads within a
workgroup are mapped to the same underlying compute unit, allowing them to synchronize and
efficiently communicate through shared memory. The dimension of a grid and its corresponding
workgroups can have one, two, or three dimensions, depending on what the programmer thinks will
be er reflect the underlying problem space.

3

Figure 1: Illustra on of a kernel launch with grid dimensions (3,3) and workgroup dimensions (8,8)

Figure 1 illustrates an example of a kernel launching a 2-D grid with dimension (3,3) and workgroup
dimension (8,8), for a total of 9 workgroups and 576 threads. The workgroup and the thread indices set
by the run me are annotated, with x-coordinates followed by y-coordinates.

At the hardware level, threads in a workgroup are further par oned into wavefronts (64 threads per
wavefront on AMD GPUs) or warps (32 threads per warp on NVIDIA GPUs) to execute in a lock-step
fashion. Wavefronts are the unit of scheduling and resource alloca on, and the execu on of a GPU
program essen ally boils down to the concurrent execu on of these wavefronts.

On AMD GPUs, there are two types of registers, scalar registers that are one instance per wavefront and
vector registers that are one instance per thread. Given a GPU kernel program, the compiler determines
how many resources (scalar registers, vector registers, and shared memory) are required to execute a
wavefront, and outputs this informa on as a metadata in the header of the executable. This informa on
is later used by the run me to allocate just enough resources to execute the kernel. As the hardware has
limited resources, the more resources that a wavefront uses, the fewer wavefronts that can be launched
and executed in parallel.

A direct effect of this programming and execu on model on GPU binary instrumenta on is that we have
a limit on the amount of resources that we can use to implement instrumenta on. There are three cases
to consider when we a empt to instrument an AMD GPU binary:

1. There are enough free registers available within the ones that are allocated to this kernel.
Therefore, our instrumenta on can be implemented using the allocated registers.

2. There are not enough free registers and we are able to increase the register alloca on,
poten ally trading thread-level-parallelism and execu on efficiency for instrumenta on
feasibility.

4

3. In the worst case, when we run out of architecturally-available registers, we admit defeat and
label the kernel as not instrumentable.

2.2 Global versus Local Register Requirement

Registers are key to forming instrumenta on instruc ons, as they are commonly used to hold memory
addresses and instruc on operands.

There are two types of register requirements for our instrumenta on purpose. The first type is global.
This can be thought of as global variables holding values that are required throughout the en re
execu on. The second type is local to the instrumenta on site. These local registers can be thought of as
temporary variables that have the life me of the scope of a single instrumenta on site.

To reserve registers to hold global variables, we pick the registers in the set-difference between the set
of allocated registers and the set of explicitly used registers, as these registers should never be used by
the kernel. To construct instrumenta on instruc ons at an instrumenta on site, we pick from the set of
registers that are dead at that site.

3 Global Register Requirements: Enabling Conven onal Instrumenta on
Enabling conven onal instrumenta on requires enabling access to stack and heap for a GPU kernel, and
alloca on of registers that point to this memory. As noted in Sec on 2.2, the register requirements
discussed here are for global registers, as we want the stack and heap address to be available at any
poten al instrumenta on site.

3.1 Enable Stack and Scratch Access for AMDGPU Kernels

Scratch memory is a special memory space that is located in the global memory of the GPU that is
automa cally allocated on wavefront crea on and freed on wavefront termina on. It is typically used to
implement stack.

An AMDGPU kernel is compiled with scratch/stack when the register pressure is too high (to perform
register spilling), or when there are func on calls in the kernel. If a kernel is compiled with scratch, at
the start of the kernel there are instruc ons that compute the base address of the stack for each
wavefront, and store them in a dedicated scalar register pair (FLAT_SCRATCH_LO /FLAT_SCRATCH_HI).
Throughout the paper, we will refer to this scalar register pair as stack base. If there are func on calls,
an addi onal dedicated scalar register would be used to store the stack pointer (currently s32), which is
a 32-bit offset from the stack base.

If a kernel is compiled with a stack, we do not need to do anything other than perhaps increasing the
size of the stack. If a kernel is not compiled with a stack, then we modify the ELF header (.note sec on)
to cause scratch memory to be allocated and modify the kernel descriptor to pass the address of this
memory to the kernel when it is launched. We note that most GPU kernels do not have stacks as the
compiler tries to inline func ons and store variables in registers whenever possible.

If a GPU kernel is not compiled with a stack and we want to enable access to it, then we need three
scalar registers globally available: two to hold the stack base, and one to hold the stack pointer . If
possible, we would keep the stack base in the dedicated register pair FLAT_SCRATCH_LO

5

/FLAT_SCRATCH_HI. If these registers are not globally available, but other registers are free, we can
perform register swap at the instrumenta on site.

3.2 Enable Heap Access for AMDGPU Kernels

A heap contains memory dynamically allocated at run me, used to hold data whose life me is not
associated with a par cular func on invoca on. It is natural to record instrumenta on data on a heap.
However, the concept of the heap itself does not really fit well with the GPU programming model, as
GPU memory typically is allocated by the host before the launch of the kernel, with the pointers to the
memories passed to the kernel as arguments. A empts to allocate memory from the GPU result in slow
and complicated GPU to CPU interac ons.

To enable GPU kernel access to a heap, the host allocates device memory and passes the address to it to
the kernel as an addi onal argument. Performing such alloca on requires that we know the maximum
amount of memory required per thread. Assuming there is no recursion (which is a common assump on
in GPU programming models), we can determine the maximum memory requirement for each thread
based on the instrumenta on that we have inserted into the code

To enable access to the heap throughout execu on, we require two globally available scalar registers to
hold the base address of the heap (heap base) and one globally available vector register to hold an
unique per-thread-ID that allows each thread to access into its own par on of the heap.

Figure 2: Heap Layout.

In Sec on 2 we described how threads are organized in a grid-workgroup structure. To index a specific
thread, we require informa on about its workgroup index into the grid, its thread index into the
containing workgroup, number of threads in a workgroup, and number of workgroups in a grid. To
simplify the computa on and storage, we assign a unique fla ened thread ID, id, to each thread
projec ng the 3-dimensional grid-workgroup structure onto a con guous 1-dimensional array of
threads.

Figure 2 shows the layout of such heap, which allows each thread to access the base address of its own
memory chunk by: (heap base) + id ✕ (per thread memory requirement).

To compute id, we rely on values set by run me when a thread is launched. The standard run me
launches all threads in the same workgroup with that workgroup’s index in the grid, grid[i,j,k]. We
modified the run me to also include the dimensions of the grid, agrid x bgrid x cgrid, at launch me.

Each thread is launched with its index into its workgroup, grid[i,j,k]->wg[x,y,z]. We modified
the run me to also include the dimensions of the workgroup, a wg x bwg x cwg. We note that all
workgroups are of the same dimension, so we can simply use the terms a wg, bwg, and cwg to describe all
workgroups.

Since each thread’s index is local to its workgroup, we use the above informa on to create a unique id
for each thread:

6

for all i < agrid, j < bgrid, k < cgrid
for all x < awg, y < bwg, z < cwg
grid[i,j,k]->wg[x,y,z]->ftid =
(i ✕ awg + x) + awg ✕ agrid ✕ ((j ✕ bwg + y) + (bwg ✕ bgrid ✕ (k ✕ cwg + z)))

4 Reducing Global Requirement for Enabling Stack and Heap
As we have discussed, we want four scalar registers and one vector register globally available to enable
stack and heap access for a GPU kernel. What if we do not have enough registers globally available? To
answer this ques on, we leverage the liveness analysis in the Dyninst binary tool suite. Figure 3 plots
the frac on of kernels that have N or more registers free globally in the MIOpen library. Combining the
scalar and vector register requirements, conven onal instrumenta on can be supported on 18.83%,
50.27% and 46.63% of the kernels on GFX908, GFX90A, GFX940, where the number of globally free
vector registers is the limi ng factor. On the other hand, if we allow increased register alloca on to the
maximum provided by the hardware, the number of globally free scalar registers can become the
limi ng factor. This is because there are a few kernels that use the maximum number of scalar registers .
However, increasing alloca on to the maxim s ll allows us to instrument 98.92% of the kernels on GFX
908, 98.78% of the kernels on GFX90A, and 95.80% of the kernels on GFX940 are instrumentable .

(a) (b) Scalar GFX90A (c) Scalar GFX940

(d) Vector GFX908 (e) Vector GFX90A (f) Vector GFX940

Figure 3: Per-Kernel Globally Free Registers in MIOpen

With some loss of efficiency, we can reduce the global register requirement down to two scalar registers
or one vector register. As long as we have two global scalar registers holding the address of the stack, we
can store the stack pointer, the heap base and the id at fixed offset rela ve to the stack base, and
having one global vector register is equivalent to having 64 global scalar registers. This increases the

7

percentage of kernels that can support conven onal instrumenta on up to 91.33% 96.34% 93.22% with
the default register alloca on, and 100%, 98.82% and 98.78% with maximum alloca on for GFX908,
GFX90A and GFX940.

Figure 4: Stack layout

Figure 4 shows the layout of the stack of a wavefront, where each row corresponds to a stack entry that
can store a vector register or 64 scalar registers. To make sure that we do not interfere with the stack
access of the unmodified binary, we add an fixed offset to the FLAT_SCRATCH_LO / FLAT_SCRATCH_HI
registers such that they point to the new stack base. At the instrumenta on site where we need to load
the spilled values, we subtract the fixed offset to recover the old stack base and use it to access the
spilled values.

As shown in the figure, in addi on to the space needed to store the stack pointer, heap base and id, we
allocate spill space of the same size. When there are no dead registers at the instrumenta on site, we
can spill live registers into these loca ons to free registers to hold the stack offset, heap base and id.

5 Local Register Requirements: Example Instrumenta on of Per Basic Counter
Assuming that we have stack and heap access informa on available (in global registers), local registers
are required for implemen ng the actual instrumenta on. We start by presen ng a simple example to
understand the register requirements for instrumenta on, a counter that records how many mes a
basic block is executed for each thread. We then give a detailed breakdown of the register requirements
for this example. We then present a progression of techniques that increase the number of kernels that
we can instrument in the MIOpen library.

5.1 Example: Basic Block Counter

We want to implement a counter for each thread that gets incremented each me a basic block is
entered.

We implement the counters as zero-ini alized 8-byte memory slots in the heap. These slots are laid out
sequen ally, indexed first by the id then by the basic block ID, bid. The counters can be incremented
through GPU vector memory instruc ons, with the address of a counter determined by

8

counter address = (heap base) + id ✕ #basic-blocks ✕ 8 + bid ✕ 8.

The total amount of memory needed is #threads ✕ #basic-blocks ✕ 8 bytes. Figure 5 provides an
example heap layout for a kernel with four basic blocks.

Figure 5: Example Heap Layout for kernels with 4 basic blocks

In Lis ng 1, we show a two dimensional example of the instrumenta on prologue used to compute the
id. At the start of a kernel, most registers are dead except those set up by the run me. In this example,

s[4:5] is set to the address of the kernel argument list, which we use to access the grid dimensions, the
workgroup dimensions, and the heap base; scalar registers s6 and s7 are set to the grid index [i,j];
and vector registers v0 and v1 are set to the workgroup index [x,y]. We also have scalar registers
s[16:17] reserved for holding the heap base and vector register v14 reserved for holding the id.
Registers other than these are dead, so they are available for use in the instrumenta on prologue. In
total, this requires a reserva on of two scalar registers to hold the base address and one vector
register to hold the id.

s_load_dwordx2 s[10:11], s[4:5], 0x1c ;s10 = a_grid , s11 = b_grid
s_load_dwordx2 s[12:13], s[4:5], 0x24 ;s12 = a_wg, s13 = b_wg
s_load_dwordx2 s[16:17], s[4:5], 0x10 ;heap base in

;s[16:17]
s_waitcnt vmcnt(0) expcnt(0) lgkmcnt(0) ;wait until load is done

s_mul_i32 s15, s7, s13 ;s15 = j ✕ b_wg
v_mov_b32_e32 v5, s15 ;v5 = j ✕ b_wg
v_add_u32_e32 v5, v1, v5 ;v5 = j ✕ b_wg + y

s_mul_i32 s14, s6, s12 ;s14 = i ✕ a_wg
v_mov_b32_e32 v4, s14 ;v4 = i ✕ a_wg
v_add_u32_e32 v4, v0, v4 ;v4 = i ✕ a_wg + x

s_mul_i32 s14, s10, s12 ;s14 = a_grid ✕ a_wg
v_mul_lo_u32 v5, s14, v5 ;v5 = (j ✕ b_wg + y) ✕ a_grid ✕ a_wg
v_add_co_u32_e32 v14, vcc, v5, v4 ;v14 = (j ✕ b_wg + y) ✕ a_grid ✕ a_wg +

; (i ✕ a_wg + x)
……… ;v14 now holds ftid
Original Kernel Starting Instructions

Lis ng 1: Instrumenta on Prologue

9

In Lis ng 2, we show the instrumenta on sequence for each basic block, where we actually increment
the counters. We use the same assump ons in Lis ng 1, where we have stored the heap base in
s[16:17] and the id in v14. Here we have vector registers v10 to v13 available at the instrumenta on
site and we use them for instrumenta on. We use the vector memory instruc on
global_atomic_inc_x2, which increments a 64-bit value pointed by v[10:11]. As this instruc on also
takes a 64 bit threshold value (it resets the memory to 0 when in-memory value exceeds the threshold),
we need two more registers to hold the threshold value -1.

In addi on to the two scalar registers and one vector register that we reserved in the prologue, we
require four more vector registers to be available at the instrumenta on site, two holding the heap base
and two holding the cutoff value.

5.2 Feasibility of Instrumenta on with Local Free Registers Informa on

To increase the coverage of instrumentable kernels, we want to leverage locally free registers whenever
possible. Looking back at our example in Sec on 4.1, only the heap base and id need to reside in
globally free registers, while register v10 to v13 only need to be available at the instrumenta on site. So
in total we only need two scalar registers and one vector register globally free, with four vector registers
available at the instrumenta on site.

10

BB0:
v_mov_b32_e32 v12, s17 ;v12 = s17 for later computation
v_mov_b32_e32 v10, 32 ;v10 = #basic-blocks ✕ 8 = 32
v_mul_lo_u32 v10, v10, v14
v_mul_hi_u32 v11, v10, v14 ;v[10:11] = (ftid ✕ 48)
v_add_co_u32 v10, v10, s16
v_addc_co_u32 v11, v11, v12 ;v[10:11] = s[16:17] + tid ✕ 32
v_mov_b32_e32 v12, -1
v_mov_b32_e32 v13, -1 ;v[12:13] = -1
global_atomic_inc_x2 v[10:11], offset:0, v[12:13] ;[v[10:11]+0]+=1 (for BB0)
Original BB0 instructions
…

BB1:
v_mov_b32_e32 v12, s17 ;v12 = s17 for later computation
v_mov_b32_e32 v10, 32 ;v10 = #basic-blocks ✕ 8 = 32
v_mul_lo_u32 v10, v10, v14
v_mul_hi_u32 v11, v10, v14 ;v[10:11] = (ftid ✕ 32) >> 32
v_add_co_u32 v10, v10, s16
v_addc_co_u32 v11, v11, v12 ;v[10:11] = s[16:17] + tid ✕ 32
v_mov_b32_e32 v12, -1
v_mov_b32_e32 v13, -1 ;v[12:13] = -1
global_atomic_inc_x2 v[10:11], offset:8, v[12:13] ;[v[10:11]+8]+=1 (for BB1)

Original BB1 instructions
…

Lis ng 2: Instrumenta on Site

(a) Scalar GFX908 (b) Scalar GFX90A (c) Scalar GFX940

(d) Vector GFX908 (e) Vector GFX90A (f) Vector GFX940

Figure 6: Per Instruc on Local Registers in MIOpen

Figure 6 plots the frac on of instruc ons in the kernels that can support conven onal instrumenta on
(with default alloca on or maximum alloca on) that have N or more registers free locally. We can see
that 99.61% of kernels in GFX908, 99.47% of the kernels in GFX90A, and 99.97% of the kernels in
GFX940 have enough globally free registers with their given register alloca on. These numbers go up to
99.90%, 100% and 99.93% respec vely, when we allow increased register alloca on.

6 Increase Instrumenta on Coverage through Value Sliding and Pre-Spilling
In Sec on 4, we discussed how we can reduce the global register requirement to enable conven onal
instrumenta on down to two scalar registers for holding the stack base. These registers might be
obtained by expanding the number of registers allocated to this kernel or by finding registers that were
free across the en re kernel. There are s ll a few cases where such registers were not globally available,
such as when all registers are already allocated by the compiler and used by the kernel, or when the use
of addi onal registers is undesired because of reduced parallelism. As we saw in Sec on 4, this situa on
never occurs in MIOpen kernels on GFX908, and about 1% of the kernels on GFX90A, and GFX940.

To be complete and cover these few cases, we ask following ques on:

Is it s ll possible to keep the stack base available throughout the execu on, therefore enable spilling
and heap access for instruc ons with sufficient dead registers, when it is not possible to find enough
globally free registers?

11

To solve this problem, we design an algorithm inspired by the well known sliding- le puzzle game.
Assuming that the stack base is available at the instrumenta on prologue, we want to keep the stack
base in registers at all mes, just not always the same registers. The key idea here is to move
instrumenta on values from their current register to a register that will be dead at the next instruc on,
or use spilling to create new dead registers if all registers are live at the next instruc on. Note that since
we need to move the stack base value through control flow edges to different basic blocks, complete
knowledge of the control flow is assumed, or act as a restric on of whether this approach applies.

We first discuss the two cases that we need to handle in the algorithm: the case where we can leverage
the exis ng dead registers of an instruc on to slide the stack base through execu on, and the case
where some instruc ons does not have enough dead registers and we need to create new dead
registers to hold these values. We then present the general algorithm.

(a) Scalar GFX90A (b) Scalar GFX940

(c) Vector GFX90A (d) Vector GFX940

Figure 7: Per Instruc on Persistent Registers

6.1 Passing Values through Locally Free (Dead) Registers

Assume you need to reserve a register for instrumenta on at instruc on I. This register should not be
used or overwri en by I, so we should pick a register that is dead before the instruc on and not defined
by that instruc on. We call these Persistent Registers, PR(I) = DEAD_PRE(I) - DEF(I).

In the simplest case where every instruc on has enough persistent registers, we can, for each
instruc on, pick a set of persistent registers, and insert move instruc ons between each neighboring
instruc ons to slide the id and the instrumenta on memory pointer through.

12

For the 8 kernels on GFX90A and the 9 kernels on GFX940 that cannot support conven onal
instrumenta on under maximum register alloca on, we plot the frac on of instruc ons that have N or
more persistent registers available in the MIOpen library. Since all kernels on GFX908 can support
conven onal instrumenta on under maximum register alloca on, they are not included in this
discussion. If an instruc on has at least two persistent scalar registers or one persistent vector register,
we have enough registers to slide the stack base through the instruc on, meaning more than 99.91% of
the instruc ons in GFX90A and GFX940 sa sfy this requirement.

(a) Scalar GFX90A (b) Scalar GFX940

(c) Vector GFX90A (d) Vector GFX940

Figure 8: Per Basic Block Free Registers

The overhead of move instruc ons can be reduced when neighboring instruc ons have a common
subset of persistent registers. In par cular, it is possible there exist registers that are allocated but dead
at every instruc on within a basic block, even when no registers are globally free. We define such
registers as per-basic-block-free-registers . If such registers exist, they become the ideal candidate for
holding the stack base, as they only need to be assigned value once on entry to the basic block. As
shown in Figure 8, for our requirement of two per-basic-block-free scalar registers, 62.5% on GFX90A
and 66.67% on GFX940 have enough per-basic-block-free scalar registers to hold the stack base within
the basic block, while for one per-basic-block-free vector register 66.67% of the basic blocks on GFX90A
and GFX940 sa sfies such requirement.

13

6.2 Pre-spilling for Instruc on without Enough Persistent Registers

From Figure 7, we know that for the kernels that we cannot allocate enough global registers to support
conven onal instrumenta on, only around 0.09% of the instruc ons do not have enough persistent
registers to hold the stack base.

To make the problem easier to understand, we introduce two more defini ons: cri cal instruc on (CI)
and non cri cal instruc on (NCI). A cri cal instruc on is an instruc on without enough persistent
registers to hold the id and the instrumenta on memory pointer, whereas a non-cri cal instruc on is
the instruc ons that has enough registers to hold the stack base. For any CI, we want to create more
persistent registers for them, by spilling registers that are live but not immediately used to stack, so we
can use these newly created persistent registers to hold the stack base and pass them through
execu on, effec vely turning them into a NCI. We will then recover the spilled registers once we find
new registers to hold the stack base in later instruc ons. As the spilling for these instruc ons must
happen at some instruc on that gets executed earlier, where the stack base informa on is s ll available,
we named this approach pre-spilling.

6.2.1 Pre-Spilling for Cri cal Instruc ons Internal to each Basic Block

We start with the simple case, assuming that a cri cal instruc on is not the first or last instruc ons in a
basic block. This assump on comes from the observa on that if a basic block corresponds to some
scope in the source code, then at the start no registers are live as the computa on has not started or
values will be overwri en, whereas at the end of a scope intermediate values are no longer required,
and holds true for all the cri cal instruc ons in the kernels in the MIOpen library.

Figure 9 illustrates how instrumenta on is inserted to perform pre-spilling. Figure 9a demonstrates the
simplest case where a cri cal instruc on I 1 is surrounded by two non-cri cal instruc ons in the same
basic block. There are three types of the instrumenta on that need to be inserted: (1) the Move
instrumenta on that moves the stack base from the selected persistent registers (denoted by SBASE) of
one instruc on to the next instruc on, highlighted in green, (2) the Pre-Spill instrumenta on for cri cal
instruc ons, highlighted in blue, and (3) the Restore instrumenta on for cri cal instruc ons, highlighted
in orange. The pre-spill of I 1 needs to happen before the execu on of I0, and the restore of registers
pre-spilled for I1 happens between I1 and I2, a er moving the stack base between the persistent
registers.

Figure 9b shows how pre-spilling can be done when there are consecu ve cri cal instruc ons, where I 1

and I2 are cri cal instruc ons. Here the pre-spill for I2 happens a er the stack base is moved to the
newly created persistent registers of I 1.

6.2.2 Pre-Spilling for Cri cal Instruc ons located at the start or the end of a Basic Block

When a cri cal instruc on is located at either the start or the end of a basic block, it might have mul ple
incoming edges or mul ple outgoing edges, making finding the pre-spill/restore loca on and picking the
registers to pre-spill more complicated. To simplify this process, we insert an intermediate block for each
control flow edge, as shown in Figure 10. Figure 10a has a basic block ending with a cri cal instruc on,
IAN, poin ng to two block star ng instruc ons I C0 and ID0,. We can pick the set of registers to pre-spill

14

independently for basic block C and basic block D as they have separate pre-spill instrumenta on, as
shown in Figure 10b. Figure 10c has a single block star ng cri cal instruc on pointed by two cri cal
instruc ons. By having separate restore instruc ons, we can pick the registers to be pre-spilled for basic
block A and B independently, as shown in FIgure 10d. By inser ng pre-spill and restore in the
intermediate basic blocks, we effec vely turn each basic block to start and end with non-cri cal
instruc on, and therefore can apply the same technique as described in Sec on 6.2.1.

(a) Pre-Spill for a CI I1 internal to a basic block,
surrounded by NCIs

(b) Pre-Spill for two consecu ve CIs internal
to a basic blocks, surrounded by NCIs

Figure 9: Pre-Spilling for Cri cal Instruc ons Internal to a Basic Block

6.3 Sliding Tile Puzzle Algorithm

The sliding puzzle algorithm has two phases. The first phase makes use of register liveness results to pick
the set of registers to hold the stack base (by picking persistent registers for non-cri cal instruc ons or
spillable registers for cri cal instruc ons). The second phase takes these results and instruments the
program to produce the necessary sliding of the stack base.

6.3.1 Picking Registers to hold the Stack Base

Figuring out the set of persistent registers for a non-cri cal instruc on is simple by defini on. As for
cri cal instruc ons, following the discussion in Sec on 6.2, we effec vely pre-spill each cri cal
instruc on at the instruc on immediately preceding it, so the computa on of the spillable register set of
a cri cal instruc on involves only the cri cal instruc on and its immediate predecessor.

Lis ng 3 shows how we select the registers used to hold the stack base, for each instruc on. For any
cri cal instruc on CI, we ini alize its set of spillable registers to the registers that are not defined nor
used in that instruc on. Then for each immediate predecessor instruc on I prev of CI, we refine CI’s

15

spillable register set to exclude the define and use set of I prev. For simplicity, we pick the registers with
the smallest register ID from the set of persistent registers or spillable registers to hold the stack base.

(a) Cri cal instruc on at the end of block A
with mul ple successor cri cal instruc ons
in C and D

(b) Pre-Spill instrumenta on for the first
instruc ons of basic blocks C and D, move
instrumenta on for the registers holding
the stack base for edges (AN,C0) and
(AN,D0), and restore instrumenta on for A N.

(c) Cri cal instruc on at the start of block C
with mul ple predecessor cri cal
instruc ons in blocks A and B

(d) Pre-Spill instrumenta on for the C 0, move
instrumenta on for the registers holding
the stack base for edges (AN,C0) and
(BN,C0), and the restore instrumenta on
for AN and BN..

Figure 10: Instrumenta on in Intermediate Blocks

6.3.2 Inser on of Implementa on

For an individual instruc on I, there are three related types of instrumenta on that need to be done. If
Iit is a cri cal instruc on, there needs to be a pre-spill, a restore, and, regardless of it being cri cal or
not, a move of stack base from the registers in the previous instruc on to the current instruc on.

16

// Compute the set of persistent registers of non-critical instructions, NCI
DEF ComputerPersistentRegs(kernel):
FOREACH NCI in the kernel:
persistentRegs[NCI] = REGS_ALLOCATED - NCI.LivePre() - NCI.Def() - NCI.Use()

// Compute the set of spillable registers of critical instructions, CI
DEF ComputeSpillable(kernel):
FOREACH CI in the kernel:
spillableRegs[CI] = REGS_ALLOCATED - CI.Def() - CI.Use()
FOREACH instruction PI that has an edge from PI to CI:
spillableRegs[CI] = spillableRegs[CI] - PI.Def() - PI.Use()

// Pick the stack base holder for each instruction
// Pick from persistent registers if the instruction is non-critical
// Pick from spillable registers if the instruction is critical
DEF ComputeStackBaseHolder(kernel):
ComputerPersistentRegs(kernel)
ComputeSpillable(kernel)
FOREACH instruction I in the kernel:
IF I is non-critical:
stackbaseRegs[I] = 2 registers in persistentRegs[I] with smallest ID

IF I is critical:
stackbaseRegs[I] = 2 registers in spillableRegs[I] with smallest ID

Lis ng 3 : Picking the Registers to Hold the Stack Base

The case of the move and restore is pre y straight forward: we insert the move between an instruc on
and its predecessors, and we insert restore between an instruc on and its successors. For a cri cal
instruc on internal to a basic block, the pre-spill should happen right before its predecessor, whereas
when it resides at the start of a basic block, the pre-spill should happen at the intermediate block that is
right before the start of the instruc on in ques on. When mul ple instrumenta on maps to the same
instrumenta on site, the pre-spill instrumenta on should happen first, followed by move and restore.

We present a breadth-first-search based algorithm that starts from the first instruc on of the kernel and
records what registers and what kind of instrumenta on is needed at each instrumenta on point, and
iterates through all the instrumenta on points and inserts the corresponding instrumenta on. as shown
in Lis ng 4.

17

// Below are three functions that record the registers involved in three maps for
// each type of instrumentation, indexed by two consecutive instructions

DEF RegisterPreSpill(curInstr,prevInstr):
IF curInstr == BB.Instructions()[0]:
preSpillRegs[prevInstr,curInstr] = stackBaseRegs[curInstr]

ELSE // For CI internal to a Basic Block, pre-spill before its predecessor
preSpillRegs[prevInstr.Predecessor(),prevInstr] = stackBaseRegs[curInstr]

DEF RegisterRestore(curInstr,nextInstr):
restoreRegs[curInstr,nextInstr] = stackBaseRegs[curInstr]

DEF RegisterMove(curInstr,prevInstr):
moveRegs[prevInstr,curInstr] = (stackBaseRegs[prevInstr],stackBaseRegs[curInstr])

// Below are three helper functions that insert instrumentation between the two
// input instructions (or their corresponding intermediate block)

// Instruments preSpill the registers in preSpillRegs[prevInstr,curInstr]
DEF InstrumentPreSpill(prevInstr,curInstr)

// Instruments move from stackBaseRegs[prevInstr] to stackBaseRegs[curInstr]
DEF InstrumentMove(prevInstr,curInstr)

// Instruments restore for registers in restoreRegs[curInstr]
DEF InstrumentRestore(curInstr,nextInstr)

DEF SlidingTilePuzzle(kernel):
ComputeStackBaseHolder(kernel)
workQueue = Queue(kernel.Instructions()[0])
WHILE workQueue.length() !=0 :
curInstr = workQueue.Dequeue()
FOREACH prevInstr in curInstr.Predecessor():
RegisterMove(curInstr,prevInstr)
IF curInstr.IsCritical():
RegisterPreSpill(curInstr,prevInstr)

FOREACH postInstr in curInstr.Successor():
RegisterRestore(curInstr,postInstr)
workQueue.Enqueue(postInstr)

FOREACH (prevInstr,curInstr) in preSpillRegs:
InstrumentPreSpill(prevInstr,curInstr)

FOREACH (prevInstr,curInstr) in moveRegs:
InstrumentMove(prevInstr,curInstr,])

FOREACH (curInstr,nextInstr) in restoreRegs:
InstrumentRestore(curInstr,nextInstr)

Lis ng 4 : Sliding Tile Puzzle Algorithm

18

7 Conclusion

In this paper, we studied the scalar and vector register availability for the 738 kernels in the MIOpen
library using a variety of measures, including the free, explicitly used, and allocated registers. We
leveraged the Dyninst binary analysis and instrumenta on toolkit to build a tool that performs control
flow, dataflow, and liveness analysis of the MIOpen GPU kernels on the AMD GFX908, GFX90A, and
GFX940 architectures.

Our findings show that instrumenta on is feasible even for these highly-op mized library kernels that
are commonly believed to have very few registers available. We described the minimal register
requirement for AMDGPU to enable conven onal instrumenta on and show that conven onal
instrumenta on can be enabled on more than 91% of the kernels in the MIOpen library, across the
GFX908, GFX90A, and GFX940 architectures with default register alloca on, and this number goes up to
98% when we allow increased register alloca on.

Finally, we presented an algorithm that enables register spilling when there are not enough globally free
registers to even hold a stack base, allowing us to cover almost any exis ng GPU binary on these
architectures.

8 References
[ABF10] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-Crummey and N.R. Talent,

“HPCToolkit: Tools for Performance Analysis of Op mized Parallel Programs”, Concurrency and
Computa on: Prac ce and Experience 22, 6, April 2010, pp. 685-701.

[AAS07] D.C. Arnold, D.H. Ahn, B.R. de Supinski, G.L. Lee, B.P. Miller and M. Schulz, “Stack Trace Analysis
for Large Scale Debugging”, 21st IEEE Interna onal Parallel and Distributed Processing Symposium
(IPDPS), Long Beach, Calif. March 2007.

[BA04] D.L. Brening, “Efficient, Transparent, and Comprehensive Run me Code Manipula on”, Ph.D.
Disserta on, Massachuse s Ins tute of Technology, Cambridge, MA, Order Number AAI0807735,
September 2024. h p://hdl.handle.net/1721.1/30160.

[BCC21] P. Bauman, N. Chalmers, N. Cur s,C. Freitag, J. Greathouse, N. Malaya, D. McDougall, S. Moe, R.
Oostrum, and N. Wolfe. Introduc on to AMDGPU Programming with HIP. Presenta on at
OakRidge Na onal Laboratory. April 2021.
h ps://www.olcf.ornl.gov/wp-content/uploads/2021/04/IntroGPUProgramming-ORNL-Hackathon
-May24-26-2021.pdf

[BK00] B. Buck and J.K. Hollingsworth. 2000. An API for Run me Code Patching. Interna onal Journal of
High Performance Compu ng Applica ons 14, 4, November 2000, pp. 317–329

[CWV14] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro, E. Shelhamer, “cuDNN:
Efficient Primi ves for Deep Learning”, h ps://arxiv.org/abs/1410.0759, October 2014.

[ES95] A. Eustace, and A. Srivastava. "ATOM: A Flexible Interface for Building High Performance Program
Analysis Tools", USENIX 1995 Technical Conference , New Orleans, January 1995.

[FMK12] W. Fang, B.P. Miller and J.A. Kupsch, “Automated Tracing and Visualiza on of So ware Security
Structure and Proper es”, 9th Interna onal Symposium on Visualiza on for Cyber Security
(VizSec), Sea le, Washington, October. 2012.

19

[HMC94] J.K. Hollingsworth, B.P. Miller and J. Cargille, "Dynamic Program Instrumenta on for Scalable
Performance Tools", Scalable High-performance Compu ng Conference (SHPCC), Knoxville,
Tennessee, May 1994.

[JBW14] E.R. Jacobson, A.R. Bernat, W.R. Williams and B.P. Miller, “Detec ng Code Reuse A acks with a
Model of Conformant Program Execu on”, Interna onal Symposium on Engineering Secure
So ware and Systems (ESSoS), Munich, Germany, February 2014.

[K71] K. Kennedy, "A Global Flow Analysis Algorithm", Interna onal Journal of Computer Mathema cs 3,
1-4, December 1971, pp. 5–15.

[KFT20] J. Khan, P. Fultz, A. Tamazov, D. Lowell, C. Liu, M. Melesse, M. Nandhimandalam, K, Nasyrov, I.
Perminov, T. Shah, V. Filippov, J. Zhang, J. Zhou, B. Natarajan, and M. Daga, “MIOpen: An Open
Source Library For Deep Learning Primi ves”, 30th Interna onal Conference on Computer
Graphics and Machine Vision (GraphiCon) , Saint Petersburg, Russia, September, 2020.
h ps://doi.org/10.51130/graphicon-2020-2-2-2

[LCM05] C.-K. Luk, R. Cohn, R. Muth, H. Pa l, A. Klauser, G. Lowney, S. Wallace, V. Janapa Reddi, and K.
Hazelwood, “PIN: building customized program analysis tools with dynamic instrumenta on”,
2005 ACM SIGPLAN Conference on Programming Language Design and Implementa on (PLDI) ,
Chicago, Illinois, June 2005. h ps://doi.org/10.1145/1065010.1065034.

[LM69] E.S. Lowry and C.W. Medlock. 1969. Object code op miza on. Communica on of ACM 12, 1, Jan.
1969, pp. 13–22. h ps://doi.org/10.1145/362835.362838

[LSR14] F. Long, S. Sidiroglou-Douskos and M. Rindard, “Automa c Run me Error Repair and
Containment Via Recovery Shepherding”, 35th ACM SIGPLAN Conference on Programming
Language Design and Implementa on (PLDI), Edinburgh, Scotland, June 2014.

[MCC95] B.P. Miller, M.D. Callaghan, J.M. Cargille, J.K. Hollingsworth, R.B. Irvin, K.L. Karavanic, K.
Kunchithapadam and T. Newhall, “The Paradyn Parallel Performance Measurement Tool”, IEEE
Computer 28, 11, November 1995, pp. 37-46.

[MP16] X. Meng and B.P. Miller, “Binary Code Is Not Easy” 25th Interna onal Symposium on So ware
Tes ng and Analysis (ISSTA), Saarbrucken, Germany, July 2016, pp. 24-35.
h ps://doi.org/10.1145/2931037.2931047

[NBG08] John Nickolls, Ian Buck, Michael Garland, Kevin Skadron: Scalable Parallel Programming with
CUDA. ACM Queue 6, 2, March 2008.

[NS07] Nicholas Nethercote and Julian Seward, “Valgrind: a Framework for Heavyweight Dynamic Binary
Instrumenta on”, 28th ACM SIGPLAN Conference on Programming Language Design and
Implementa on (PLDI), San Diego, California, June 2007.
h ps://doi.org/10.1145/1273442.1250746

[OAK11] P. O’Sullivan, K. Anand, A. Kotha, M. Smithson, R. Barua and A.D. Keromy s, “Retrofi ng
Security in COTS So ware with Binary Rewri ng”, 26th IFIP TC-11 Interna onal Informa on
Security Conference (IFIP SEC), Hamburg, Germany, June 2011.

[SM06] S.S. Shende and A.D. Malony, “The Tau Parallel Performance System”, Interna onal Journal of
High Performance Compu ng Applica ons 20, 2. May 2006, pp. 287-311.

20

