
Register Availability Analysis in Support of
Instrumentation of GPU Kernels

Hsuan-Heng Wu
hwu337@wisc.edu

Barton P. Miller
bart@cs.wisc.edu

Computer Sciences Department
University of Wisconsin-Madison

1210 W. Dayton St.
Madison, WI 53706

1 MoƟvaƟon

Binary code instrumentaƟon is used in a wide range of applicaƟons, including performance analysis
[ABF10,MCC95,SM06], debugging [AAS07], soŌware reliability [LSR14], and security
[FMK12,JBW14,OAK11]. InstrumentaƟon of binary code is a criƟcal capability in these applicaƟons
because it does not require source code to be available and targets the actual soŌware arƟfact that is
executed.

A challenge of instrumenƟng binary code is having sufficient resources (such as free registers or
memory), to save and restore processor state around the instrumentaƟon code so that the behavior of
the underlying applicaƟon code is not affected, and to record instrumentaƟon data. Compared to binary
instrumentaƟon of CPU code [ES95,LCM05,MP16,NS07 ,BA04], some properƟes of the GPU execuƟon
model prevent us from directly applying the convenƟonal CPU binary instrumentaƟon approaches on
GPU binaries:

1. Compared to CPU programs having access to a general purpose stack and heap, GPU programs
are not guaranteed access to these memories, which are useful for register spilling and
recording instrumentaƟon data.

2. Compared to CPU programs that can make use of all architecturally available registers, GPU
programs are launched with the minimal number of registers required, so that the more threads
can run in parallel on the hardware. This means that there will be fewer registers available for
instrumentaƟon, and the instrumentaƟon needs to be aware of register allocaƟon to be
efficient.

3. The problem worsens when a GPU program tries to use all architecturally available registers, as
now we will not be able to trade efficiency for feasibility by asking for more registers to be used
to launch the GPU program.

From our informal discussions with GPU vendors, GPU library teams, and applicaƟon groups, there is the
widely held belief that there are GPU codes that frequently use all the available registers in the
applicaƟon code, leaving none available for instrumentaƟon code. The most commonly menƟoned
worst-case kernels are the hardware-opƟmized machine learning libraries provided by vendors such as

1

cuDnn [CWV14] for NVIDIA GPUs wriƩen in CUDA [NBG08] and MIOpen [KFT20] for AMD GPUs wriƩen
in HIP [BCC21]. In these libraries, it is not uncommon to see GPU kernels declaring the use of all
available registers, making it impossible to claim addiƟonal registers for instrumentaƟon purposes.

As we will demonstrate in later secƟons, the soluƟons to these issues are actually intertwined: We need
enough registers to hold locaƟon informaƟon of a stack and a heap, and access to stack and heap allows
us to free up more registers and use them for instrumentaƟon. Throughout this paper, our goal of
enabling stack and heap access to GPU programs will be referred to as convenƟonal instrumentaƟon , as
these accesses will enable us to adopt most if not all instrumentaƟon soluƟons from the long-developed
world of CPU binary instrumentaƟon.

This paper describes our analysis of the register requirements to support convenƟonal instrumentaƟon,
and our invesƟgaƟon of the actual register use for a highly demanding library running on the AMD GPU
plaƞorm. Careful analysis of these kernels reveals that there is almost always sufficient minimum
register availability at every instrucƟon in every kernel. In fact, there are oŌen more than the minimum
available at many instrucƟons, allowing instrumentaƟon without any required register spilling. The
significance of this result is that fine grained binary code instrumentaƟon of these GPU kernels is
pracƟcal in almost all cases.

There are a few simple ways in which we can measure register usage in a GPU kernel. For example, in an
AMD GPU binary, we have the following three types of register usage informaƟon obtainable through a
simple scan of the GPU applicaƟon kernel.

1. Registers Allocated: GPU registers are allocated in units of 8 or 16. For each kernel, there exists a
field in the kernel’s header specifying the number of registers to be allocated at runƟme.

2. Register Usage Declared: In the .note secƟon of the kernel’s header, there exists a field
specifying the number of registers actually used in the kernel. which should be no greater than
the amount of register allocated.

3. Registers Explicitly Used: For each instrucƟon, we can decode its operands, checking which
registers are used to get an accurate measure of register usage.

We first observed that the above measures oŌen over approximate the number of registers being used.
Not all instrucƟons (or even basic blocks or funcƟons) use all registers. And while the above techniques
can tell you cumulaƟvely which registers are being used, they cannot tell you, at any given point in the
code, which registers might be free. To produce such per-instrucƟon free register informaƟon, we use a
liveness analysis [K71] of the binary code. Those registers that are not in use by the applicaƟon code can
be used by the instrumentaƟon code. The liveness informaƟon requires a control and dataflow analysis
of the code to produce a conservaƟve esƟmate of which registers are in use. In this case, conservaƟve
means that no register is ever marked as live if it contains data that might be again used by the
applicaƟon.

In this paper, we study the scalar and vector register availability for the 738 kernels in the MIOpen
library using a variety of measures, including the free, explicitly used, and allocated registers. We
leverage the Dyninst binary analysis and instrumentaƟon toolkit [BK00,HMC94,MP16] to create a tool

2

that can perform the control flow, dataflow, and liveness analysis of the MIOpen GPU kernels on the
AMD GFX908, GFX90A and GFX940 architectures.

Our findings show that free registers are available at almost all instrucƟons in these kernels,
demonstraƟng the feasibility of instrumenƟng these highly-opƟmized GPU library kernels with no
addiƟonal register requirements. We go to show a variety of effecƟve techniques for generaƟng
instrumentaƟon of GPU kernels on the register resource availability at that site.

Our main results are as follows:

● The informaƟon contained in GPU executable headers is overly conservaƟve by a large margin
(SecƟon 3).

● For instrumentaƟon needs, either enough registers are globally available or register allocaƟons
can be increased in 99% of the kernels on the GFX908, GFX90A, and 95% on the GFX940
processors (SecƟon 3)

● Register available can be increased to accommodate any instrumentaƟon needed by a variety of
register spilling techniques (SecƟon 4).

● In cases where there are insufficient global registers available to meet the minimal needs,
globally needed values for instrumentaƟon can be moved from register to register based on our
Sliding Tile Puzzle algorithm. This technique increases the percentage of kernels that we can
instrument to 100% of the kernels on the GFX908, GFX90A, GFX940 processors (SecƟon 5)

2 Background
Our instrumentaƟon strategies provide a foundaƟon for the later secƟons of this paper. The GPU
programming and execuƟon model and registers play an important role in the GPU binary
instrumentaƟon, resulƟng in differences between global versus local register requirements for
instrumentaƟon. In this secƟon, we describe each of these.

2.1 ExecuƟon model

With the Single InstrucƟon MulƟple Thread (SIMT) execuƟon model, a GPU kernel program describes
how a thread should execute, and the host decides how many threads are associated with the execuƟon
of this kernel. The threads are launched as a grid of workgroups, where the programmer determines the
number of workgroups within a grid, and the number of threads within a workgroup. Threads within a
workgroup are mapped to the same underlying compute unit, allowing them to synchronize and
efficiently communicate through shared memory. The dimension of a grid and its corresponding
workgroups can have one, two, or three dimensions, depending on what the programmer thinks will
beƩer reflect the underlying problem space.

3

Figure 1: IllustraƟon of a kernel launch with grid dimensions (3,3) and workgroup dimensions (8,8)

Figure 1 illustrates an example of a kernel launching a 2-D grid with dimension (3,3) and workgroup
dimension (8,8), for a total of 9 workgroups and 576 threads. The workgroup and the thread indices set
by the runƟme are annotated, with x-coordinates followed by y-coordinates.

At the hardware level, threads in a workgroup are further parƟƟoned into wavefronts (64 threads per
wavefront on AMD GPUs) or warps (32 threads per warp on NVIDIA GPUs) to execute in a lock-step
fashion. Wavefronts are the unit of scheduling and resource allocaƟon, and the execuƟon of a GPU
program essenƟally boils down to the concurrent execuƟon of these wavefronts.

On AMD GPUs, there are two types of registers, scalar registers that are one instance per wavefront and
vector registers that are one instance per thread. Given a GPU kernel program, the compiler determines
how many resources (scalar registers, vector registers, and shared memory) are required to execute a
wavefront, and outputs this informaƟon as a metadata in the header of the executable. This informaƟon
is later used by the runƟme to allocate just enough resources to execute the kernel. As the hardware has
limited resources, the more resources that a wavefront uses, the fewer wavefronts that can be launched
and executed in parallel.

A direct effect of this programming and execuƟon model on GPU binary instrumentaƟon is that we have
a limit on the amount of resources that we can use to implement instrumentaƟon. There are three cases
to consider when we aƩempt to instrument an AMD GPU binary:

1. There are enough free registers available within the ones that are allocated to this kernel.
Therefore, our instrumentaƟon can be implemented using the allocated registers.

2. There are not enough free registers and we are able to increase the register allocaƟon,
potenƟally trading thread-level-parallelism and execuƟon efficiency for instrumentaƟon
feasibility.

4

3. In the worst case, when we run out of architecturally-available registers, we admit defeat and
label the kernel as not instrumentable.

2.2 Global versus Local Register Requirement

Registers are key to forming instrumentaƟon instrucƟons, as they are commonly used to hold memory
addresses and instrucƟon operands.

There are two types of register requirements for our instrumentaƟon purpose. The first type is global.
This can be thought of as global variables holding values that are required throughout the enƟre
execuƟon. The second type is local to the instrumentaƟon site. These local registers can be thought of as
temporary variables that have the lifeƟme of the scope of a single instrumentaƟon site.

To reserve registers to hold global variables, we pick the registers in the set-difference between the set
of allocated registers and the set of explicitly used registers, as these registers should never be used by
the kernel. To construct instrumentaƟon instrucƟons at an instrumentaƟon site, we pick from the set of
registers that are dead at that site.

3 Global Register Requirements: Enabling ConvenƟonal InstrumentaƟon
Enabling convenƟonal instrumentaƟon requires enabling access to stack and heap for a GPU kernel, and
allocaƟon of registers that point to this memory. As noted in SecƟon 2.2, the register requirements
discussed here are for global registers, as we want the stack and heap address to be available at any
potenƟal instrumentaƟon site.

3.1 Enable Stack and Scratch Access for AMDGPU Kernels

Scratch memory is a special memory space that is located in the global memory of the GPU that is
automaƟcally allocated on wavefront creaƟon and freed on wavefront terminaƟon. It is typically used to
implement stack.

An AMDGPU kernel is compiled with scratch/stack when the register pressure is too high (to perform
register spilling), or when there are funcƟon calls in the kernel. If a kernel is compiled with scratch, at
the start of the kernel there are instrucƟons that compute the base address of the stack for each
wavefront, and store them in a dedicated scalar register pair (FLAT_SCRATCH_LO /FLAT_SCRATCH_HI).
Throughout the paper, we will refer to this scalar register pair as stack base. If there are funcƟon calls,
an addiƟonal dedicated scalar register would be used to store the stack pointer (currently s32), which is
a 32-bit offset from the stack base.

If a kernel is compiled with a stack, we do not need to do anything other than perhaps increasing the
size of the stack. If a kernel is not compiled with a stack, then we modify the ELF header (.note secƟon)
to cause scratch memory to be allocated and modify the kernel descriptor to pass the address of this
memory to the kernel when it is launched. We note that most GPU kernels do not have stacks as the
compiler tries to inline funcƟons and store variables in registers whenever possible.

If a GPU kernel is not compiled with a stack and we want to enable access to it, then we need three
scalar registers globally available: two to hold the stack base, and one to hold the stack pointer . If
possible, we would keep the stack base in the dedicated register pair FLAT_SCRATCH_LO

5

/FLAT_SCRATCH_HI. If these registers are not globally available, but other registers are free, we can
perform register swap at the instrumentaƟon site.

3.2 Enable Heap Access for AMDGPU Kernels

A heap contains memory dynamically allocated at runƟme, used to hold data whose lifeƟme is not
associated with a parƟcular funcƟon invocaƟon. It is natural to record instrumentaƟon data on a heap.
However, the concept of the heap itself does not really fit well with the GPU programming model, as
GPU memory typically is allocated by the host before the launch of the kernel, with the pointers to the
memories passed to the kernel as arguments. AƩempts to allocate memory from the GPU result in slow
and complicated GPU to CPU interacƟons.

To enable GPU kernel access to a heap, the host allocates device memory and passes the address to it to
the kernel as an addiƟonal argument. Performing such allocaƟon requires that we know the maximum
amount of memory required per thread. Assuming there is no recursion (which is a common assumpƟon
in GPU programming models), we can determine the maximum memory requirement for each thread
based on the instrumentaƟon that we have inserted into the code

To enable access to the heap throughout execuƟon, we require two globally available scalar registers to
hold the base address of the heap (heap base) and one globally available vector register to hold an
unique per-thread-ID that allows each thread to access into its own parƟƟon of the heap.

Figure 2: Heap Layout.

In SecƟon 2 we described how threads are organized in a grid-workgroup structure. To index a specific
thread, we require informaƟon about its workgroup index into the grid, its thread index into the
containing workgroup, number of threads in a workgroup, and number of workgroups in a grid. To
simplify the computaƟon and storage, we assign a unique flaƩened thread ID, Ōid, to each thread
projecƟng the 3-dimensional grid-workgroup structure onto a conƟguous 1-dimensional array of
threads.

Figure 2 shows the layout of such heap, which allows each thread to access the base address of its own
memory chunk by: (heap base) + Ōid ✕ (per thread memory requirement).

To compute Ōid, we rely on values set by runƟme when a thread is launched. The standard runƟme
launches all threads in the same workgroup with that workgroup’s index in the grid, grid[i,j,k]. We
modified the runƟme to also include the dimensions of the grid, agrid x bgrid x cgrid, at launch Ɵme.

Each thread is launched with its index into its workgroup, grid[i,j,k]->wg[x,y,z]. We modified
the runƟme to also include the dimensions of the workgroup, a wg x bwg x cwg. We note that all
workgroups are of the same dimension, so we can simply use the terms a wg, bwg, and cwg to describe all
workgroups.

Since each thread’s index is local to its workgroup, we use the above informaƟon to create a unique Ōid
for each thread:

6

for all i < agrid, j < bgrid, k < cgrid
for all x < awg, y < bwg, z < cwg
grid[i,j,k]->wg[x,y,z]->ftid =
(i ✕ awg + x) + awg ✕ agrid ✕ ((j ✕ bwg + y) + (bwg ✕ bgrid ✕ (k ✕ cwg + z)))

4 Reducing Global Requirement for Enabling Stack and Heap
As we have discussed, we want four scalar registers and one vector register globally available to enable
stack and heap access for a GPU kernel. What if we do not have enough registers globally available? To
answer this quesƟon, we leverage the liveness analysis in the Dyninst binary tool suite. Figure 3 plots
the fracƟon of kernels that have N or more registers free globally in the MIOpen library. Combining the
scalar and vector register requirements, convenƟonal instrumentaƟon can be supported on 18.83%,
50.27% and 46.63% of the kernels on GFX908, GFX90A, GFX940, where the number of globally free
vector registers is the limiƟng factor. On the other hand, if we allow increased register allocaƟon to the
maximum provided by the hardware, the number of globally free scalar registers can become the
limiƟng factor. This is because there are a few kernels that use the maximum number of scalar registers .
However, increasing allocaƟon to the maxim sƟll allows us to instrument 98.92% of the kernels on GFX
908, 98.78% of the kernels on GFX90A, and 95.80% of the kernels on GFX940 are instrumentable .

(a) (b) Scalar GFX90A (c) Scalar GFX940

(d) Vector GFX908 (e) Vector GFX90A (f) Vector GFX940

Figure 3: Per-Kernel Globally Free Registers in MIOpen

With some loss of efficiency, we can reduce the global register requirement down to two scalar registers
or one vector register. As long as we have two global scalar registers holding the address of the stack, we
can store the stack pointer, the heap base and the Ōid at fixed offset relaƟve to the stack base, and
having one global vector register is equivalent to having 64 global scalar registers. This increases the

7

percentage of kernels that can support convenƟonal instrumentaƟon up to 91.33% 96.34% 93.22% with
the default register allocaƟon, and 100%, 98.82% and 98.78% with maximum allocaƟon for GFX908,
GFX90A and GFX940.

Figure 4: Stack layout

Figure 4 shows the layout of the stack of a wavefront, where each row corresponds to a stack entry that
can store a vector register or 64 scalar registers. To make sure that we do not interfere with the stack
access of the unmodified binary, we add an fixed offset to the FLAT_SCRATCH_LO / FLAT_SCRATCH_HI
registers such that they point to the new stack base. At the instrumentaƟon site where we need to load
the spilled values, we subtract the fixed offset to recover the old stack base and use it to access the
spilled values.

As shown in the figure, in addiƟon to the space needed to store the stack pointer, heap base and Ōid, we
allocate spill space of the same size. When there are no dead registers at the instrumentaƟon site, we
can spill live registers into these locaƟons to free registers to hold the stack offset, heap base and Ōid.

5 Local Register Requirements: Example InstrumentaƟon of Per Basic Counter
Assuming that we have stack and heap access informaƟon available (in global registers), local registers
are required for implemenƟng the actual instrumentaƟon. We start by presenƟng a simple example to
understand the register requirements for instrumentaƟon, a counter that records how many Ɵmes a
basic block is executed for each thread. We then give a detailed breakdown of the register requirements
for this example. We then present a progression of techniques that increase the number of kernels that
we can instrument in the MIOpen library.

5.1 Example: Basic Block Counter

We want to implement a counter for each thread that gets incremented each Ɵme a basic block is
entered.

We implement the counters as zero-iniƟalized 8-byte memory slots in the heap. These slots are laid out
sequenƟally, indexed first by the Ōid then by the basic block ID, bid. The counters can be incremented
through GPU vector memory instrucƟons, with the address of a counter determined by

8

counter address = (heap base) + Ōid ✕ #basic-blocks ✕ 8 + bid ✕ 8.

The total amount of memory needed is #threads ✕ #basic-blocks ✕ 8 bytes. Figure 5 provides an
example heap layout for a kernel with four basic blocks.

Figure 5: Example Heap Layout for kernels with 4 basic blocks

In LisƟng 1, we show a two dimensional example of the instrumentaƟon prologue used to compute the
Ōid. At the start of a kernel, most registers are dead except those set up by the runƟme. In this example,
s[4:5] is set to the address of the kernel argument list, which we use to access the grid dimensions, the
workgroup dimensions, and the heap base; scalar registers s6 and s7 are set to the grid index [i,j];
and vector registers v0 and v1 are set to the workgroup index [x,y]. We also have scalar registers
s[16:17] reserved for holding the heap base and vector register v14 reserved for holding the Ōid.
Registers other than these are dead, so they are available for use in the instrumentaƟon prologue. In
total, this requires a reservaƟon of two scalar registers to hold the base address and one vector
register to hold the Ōid.

s_load_dwordx2 s[10:11], s[4:5], 0x1c ;s10 = a_grid , s11 = b_grid
s_load_dwordx2 s[12:13], s[4:5], 0x24 ;s12 = a_wg, s13 = b_wg
s_load_dwordx2 s[16:17], s[4:5], 0x10 ;heap base in

;s[16:17]
s_waitcnt vmcnt(0) expcnt(0) lgkmcnt(0) ;wait until load is done

s_mul_i32 s15, s7, s13 ;s15 = j ✕ b_wg
v_mov_b32_e32 v5, s15 ;v5 = j ✕ b_wg
v_add_u32_e32 v5, v1, v5 ;v5 = j ✕ b_wg + y

s_mul_i32 s14, s6, s12 ;s14 = i ✕ a_wg
v_mov_b32_e32 v4, s14 ;v4 = i ✕ a_wg
v_add_u32_e32 v4, v0, v4 ;v4 = i ✕ a_wg + x

s_mul_i32 s14, s10, s12 ;s14 = a_grid ✕ a_wg
v_mul_lo_u32 v5, s14, v5 ;v5 = (j ✕ b_wg + y) ✕ a_grid ✕ a_wg
v_add_co_u32_e32 v14, vcc, v5, v4 ;v14 = (j ✕ b_wg + y) ✕ a_grid ✕ a_wg +

; (i ✕ a_wg + x)
……… ;v14 now holds ftid
Original Kernel Starting Instructions

LisƟng 1: InstrumentaƟon Prologue

9

In LisƟng 2, we show the instrumentaƟon sequence for each basic block, where we actually increment
the counters. We use the same assumpƟons in LisƟng 1, where we have stored the heap base in
s[16:17] and the Ōid in v14. Here we have vector registers v10 to v13 available at the instrumentaƟon
site and we use them for instrumentaƟon. We use the vector memory instrucƟon
global_atomic_inc_x2, which increments a 64-bit value pointed by v[10:11]. As this instrucƟon also
takes a 64 bit threshold value (it resets the memory to 0 when in-memory value exceeds the threshold),
we need two more registers to hold the threshold value -1.

In addiƟon to the two scalar registers and one vector register that we reserved in the prologue, we
require four more vector registers to be available at the instrumentaƟon site, two holding the heap base
and two holding the cutoff value.

5.2 Feasibility of InstrumentaƟon with Local Free Registers InformaƟon

To increase the coverage of instrumentable kernels, we want to leverage locally free registers whenever
possible. Looking back at our example in SecƟon 4.1, only the heap base and Ōid need to reside in
globally free registers, while register v10 to v13 only need to be available at the instrumentaƟon site. So
in total we only need two scalar registers and one vector register globally free, with four vector registers
available at the instrumentaƟon site.

10

BB0:
v_mov_b32_e32 v12, s17 ;v12 = s17 for later computation
v_mov_b32_e32 v10, 32 ;v10 = #basic-blocks ✕ 8 = 32
v_mul_lo_u32 v10, v10, v14
v_mul_hi_u32 v11, v10, v14 ;v[10:11] = (ftid ✕ 48)
v_add_co_u32 v10, v10, s16
v_addc_co_u32 v11, v11, v12 ;v[10:11] = s[16:17] + tid ✕ 32
v_mov_b32_e32 v12, -1
v_mov_b32_e32 v13, -1 ;v[12:13] = -1
global_atomic_inc_x2 v[10:11], offset:0, v[12:13] ;[v[10:11]+0]+=1 (for BB0)
Original BB0 instructions
…

BB1:
v_mov_b32_e32 v12, s17 ;v12 = s17 for later computation
v_mov_b32_e32 v10, 32 ;v10 = #basic-blocks ✕ 8 = 32
v_mul_lo_u32 v10, v10, v14
v_mul_hi_u32 v11, v10, v14 ;v[10:11] = (ftid ✕ 32) >> 32
v_add_co_u32 v10, v10, s16
v_addc_co_u32 v11, v11, v12 ;v[10:11] = s[16:17] + tid ✕ 32
v_mov_b32_e32 v12, -1
v_mov_b32_e32 v13, -1 ;v[12:13] = -1
global_atomic_inc_x2 v[10:11], offset:8, v[12:13] ;[v[10:11]+8]+=1 (for BB1)

Original BB1 instructions
…

LisƟng 2: InstrumentaƟon Site

(a) Scalar GFX908 (b) Scalar GFX90A (c) Scalar GFX940

(d) Vector GFX908 (e) Vector GFX90A (f) Vector GFX940

Figure 6: Per InstrucƟon Local Registers in MIOpen

Figure 6 plots the fracƟon of instrucƟons in the kernels that can support convenƟonal instrumentaƟon
(with default allocaƟon or maximum allocaƟon) that have N or more registers free locally. We can see
that 99.61% of kernels in GFX908, 99.47% of the kernels in GFX90A, and 99.97% of the kernels in
GFX940 have enough globally free registers with their given register allocaƟon. These numbers go up to
99.90%, 100% and 99.93% respecƟvely, when we allow increased register allocaƟon.

6 Increase InstrumentaƟon Coverage through Value Sliding and Pre-Spilling
In SecƟon 4, we discussed how we can reduce the global register requirement to enable convenƟonal
instrumentaƟon down to two scalar registers for holding the stack base. These registers might be
obtained by expanding the number of registers allocated to this kernel or by finding registers that were
free across the enƟre kernel. There are sƟll a few cases where such registers were not globally available,
such as when all registers are already allocated by the compiler and used by the kernel, or when the use
of addiƟonal registers is undesired because of reduced parallelism. As we saw in SecƟon 4, this situaƟon
never occurs in MIOpen kernels on GFX908, and about 1% of the kernels on GFX90A, and GFX940.

To be complete and cover these few cases, we ask following quesƟon:

Is it sƟll possible to keep the stack base available throughout the execuƟon, therefore enable spilling
and heap access for instrucƟons with sufficient dead registers, when it is not possible to find enough
globally free registers?

11

To solve this problem, we design an algorithm inspired by the well known sliding-Ɵle puzzle game.
Assuming that the stack base is available at the instrumentaƟon prologue, we want to keep the stack
base in registers at all Ɵmes, just not always the same registers. The key idea here is to move
instrumentaƟon values from their current register to a register that will be dead at the next instrucƟon,
or use spilling to create new dead registers if all registers are live at the next instrucƟon. Note that since
we need to move the stack base value through control flow edges to different basic blocks, complete
knowledge of the control flow is assumed, or act as a restricƟon of whether this approach applies.

We first discuss the two cases that we need to handle in the algorithm: the case where we can leverage
the exisƟng dead registers of an instrucƟon to slide the stack base through execuƟon, and the case
where some instrucƟons does not have enough dead registers and we need to create new dead
registers to hold these values. We then present the general algorithm.

(a) Scalar GFX90A (b) Scalar GFX940

(c) Vector GFX90A (d) Vector GFX940

Figure 7: Per InstrucƟon Persistent Registers

6.1 Passing Values through Locally Free (Dead) Registers

Assume you need to reserve a register for instrumentaƟon at instrucƟon I. This register should not be
used or overwriƩen by I, so we should pick a register that is dead before the instrucƟon and not defined
by that instrucƟon. We call these Persistent Registers, PR(I) = DEAD_PRE(I) - DEF(I).

In the simplest case where every instrucƟon has enough persistent registers, we can, for each
instrucƟon, pick a set of persistent registers, and insert move instrucƟons between each neighboring
instrucƟons to slide the Ōid and the instrumentaƟon memory pointer through.

12

For the 8 kernels on GFX90A and the 9 kernels on GFX940 that cannot support convenƟonal
instrumentaƟon under maximum register allocaƟon, we plot the fracƟon of instrucƟons that have N or
more persistent registers available in the MIOpen library. Since all kernels on GFX908 can support
convenƟonal instrumentaƟon under maximum register allocaƟon, they are not included in this
discussion. If an instrucƟon has at least two persistent scalar registers or one persistent vector register,
we have enough registers to slide the stack base through the instrucƟon, meaning more than 99.91% of
the instrucƟons in GFX90A and GFX940 saƟsfy this requirement.

(a) Scalar GFX90A (b) Scalar GFX940

(c) Vector GFX90A (d) Vector GFX940

Figure 8: Per Basic Block Free Registers

The overhead of move instrucƟons can be reduced when neighboring instrucƟons have a common
subset of persistent registers. In parƟcular, it is possible there exist registers that are allocated but dead
at every instrucƟon within a basic block, even when no registers are globally free. We define such
registers as per-basic-block-free-registers . If such registers exist, they become the ideal candidate for
holding the stack base, as they only need to be assigned value once on entry to the basic block. As
shown in Figure 8, for our requirement of two per-basic-block-free scalar registers, 62.5% on GFX90A
and 66.67% on GFX940 have enough per-basic-block-free scalar registers to hold the stack base within
the basic block, while for one per-basic-block-free vector register 66.67% of the basic blocks on GFX90A
and GFX940 saƟsfies such requirement.

13

6.2 Pre-spilling for InstrucƟon without Enough Persistent Registers

From Figure 7, we know that for the kernels that we cannot allocate enough global registers to support
convenƟonal instrumentaƟon, only around 0.09% of the instrucƟons do not have enough persistent
registers to hold the stack base.

To make the problem easier to understand, we introduce two more definiƟons: criƟcal instrucƟon (CI)
and non criƟcal instrucƟon (NCI). A criƟcal instrucƟon is an instrucƟon without enough persistent
registers to hold the Ōid and the instrumentaƟon memory pointer, whereas a non-criƟcal instrucƟon is
the instrucƟons that has enough registers to hold the stack base. For any CI, we want to create more
persistent registers for them, by spilling registers that are live but not immediately used to stack, so we
can use these newly created persistent registers to hold the stack base and pass them through
execuƟon, effecƟvely turning them into a NCI. We will then recover the spilled registers once we find
new registers to hold the stack base in later instrucƟons. As the spilling for these instrucƟons must
happen at some instrucƟon that gets executed earlier, where the stack base informaƟon is sƟll available,
we named this approach pre-spilling.

6.2.1 Pre-Spilling for CriƟcal InstrucƟons Internal to each Basic Block

We start with the simple case, assuming that a criƟcal instrucƟon is not the first or last instrucƟons in a
basic block. This assumpƟon comes from the observaƟon that if a basic block corresponds to some
scope in the source code, then at the start no registers are live as the computaƟon has not started or
values will be overwriƩen, whereas at the end of a scope intermediate values are no longer required,
and holds true for all the criƟcal instrucƟons in the kernels in the MIOpen library.

Figure 9 illustrates how instrumentaƟon is inserted to perform pre-spilling. Figure 9a demonstrates the
simplest case where a criƟcal instrucƟon I 1 is surrounded by two non-criƟcal instrucƟons in the same
basic block. There are three types of the instrumentaƟon that need to be inserted: (1) the Move
instrumentaƟon that moves the stack base from the selected persistent registers (denoted by SBASE) of
one instrucƟon to the next instrucƟon, highlighted in green, (2) the Pre-Spill instrumentaƟon for criƟcal
instrucƟons, highlighted in blue, and (3) the Restore instrumentaƟon for criƟcal instrucƟons, highlighted
in orange. The pre-spill of I 1 needs to happen before the execuƟon of I0, and the restore of registers
pre-spilled for I1 happens between I1 and I2, aŌer moving the stack base between the persistent
registers.

Figure 9b shows how pre-spilling can be done when there are consecuƟve criƟcal instrucƟons, where I 1

and I2 are criƟcal instrucƟons. Here the pre-spill for I2 happens aŌer the stack base is moved to the
newly created persistent registers of I 1.

6.2.2 Pre-Spilling for CriƟcal InstrucƟons located at the start or the end of a Basic Block

When a criƟcal instrucƟon is located at either the start or the end of a basic block, it might have mulƟple
incoming edges or mulƟple outgoing edges, making finding the pre-spill/restore locaƟon and picking the
registers to pre-spill more complicated. To simplify this process, we insert an intermediate block for each
control flow edge, as shown in Figure 10. Figure 10a has a basic block ending with a criƟcal instrucƟon,
IAN, poinƟng to two block starƟng instrucƟons I C0 and ID0,. We can pick the set of registers to pre-spill

14

independently for basic block C and basic block D as they have separate pre-spill instrumentaƟon, as
shown in Figure 10b. Figure 10c has a single block starƟng criƟcal instrucƟon pointed by two criƟcal
instrucƟons. By having separate restore instrucƟons, we can pick the registers to be pre-spilled for basic
block A and B independently, as shown in FIgure 10d. By inserƟng pre-spill and restore in the
intermediate basic blocks, we effecƟvely turn each basic block to start and end with non-criƟcal
instrucƟon, and therefore can apply the same technique as described in SecƟon 6.2.1.

(a) Pre-Spill for a CI I1 internal to a basic block,
surrounded by NCIs

(b) Pre-Spill for two consecuƟve CIs internal
to a basic blocks, surrounded by NCIs

Figure 9: Pre-Spilling for CriƟcal InstrucƟons Internal to a Basic Block

6.3 Sliding Tile Puzzle Algorithm

The sliding puzzle algorithm has two phases. The first phase makes use of register liveness results to pick
the set of registers to hold the stack base (by picking persistent registers for non-criƟcal instrucƟons or
spillable registers for criƟcal instrucƟons). The second phase takes these results and instruments the
program to produce the necessary sliding of the stack base.

6.3.1 Picking Registers to hold the Stack Base

Figuring out the set of persistent registers for a non-criƟcal instrucƟon is simple by definiƟon. As for
criƟcal instrucƟons, following the discussion in SecƟon 6.2, we effecƟvely pre-spill each criƟcal
instrucƟon at the instrucƟon immediately preceding it, so the computaƟon of the spillable register set of
a criƟcal instrucƟon involves only the criƟcal instrucƟon and its immediate predecessor.

LisƟng 3 shows how we select the registers used to hold the stack base, for each instrucƟon. For any
criƟcal instrucƟon CI, we iniƟalize its set of spillable registers to the registers that are not defined nor
used in that instrucƟon. Then for each immediate predecessor instrucƟon I prev of CI, we refine CI’s

15

spillable register set to exclude the define and use set of I prev. For simplicity, we pick the registers with
the smallest register ID from the set of persistent registers or spillable registers to hold the stack base.

(a) CriƟcal instrucƟon at the end of block A
with mulƟple successor criƟcal instrucƟons
in C and D

(b) Pre-Spill instrumentaƟon for the first
instrucƟons of basic blocks C and D, move
instrumentaƟon for the registers holding
the stack base for edges (AN,C0) and
(AN,D0), and restore instrumentaƟon for A N.

(c) CriƟcal instrucƟon at the start of block C
with mulƟple predecessor criƟcal
instrucƟons in blocks A and B

(d) Pre-Spill instrumentaƟon for the C 0, move
instrumentaƟon for the registers holding
the stack base for edges (AN,C0) and
(BN,C0), and the restore instrumentaƟon
for AN and BN..

Figure 10: InstrumentaƟon in Intermediate Blocks

6.3.2 InserƟon of ImplementaƟon

For an individual instrucƟon I, there are three related types of instrumentaƟon that need to be done. If
Iit is a criƟcal instrucƟon, there needs to be a pre-spill, a restore, and, regardless of it being criƟcal or
not, a move of stack base from the registers in the previous instrucƟon to the current instrucƟon.

16

// Compute the set of persistent registers of non-critical instructions, NCI
DEF ComputerPersistentRegs(kernel):
FOREACH NCI in the kernel:
persistentRegs[NCI] = REGS_ALLOCATED - NCI.LivePre() - NCI.Def() - NCI.Use()

// Compute the set of spillable registers of critical instructions, CI
DEF ComputeSpillable(kernel):
FOREACH CI in the kernel:
spillableRegs[CI] = REGS_ALLOCATED - CI.Def() - CI.Use()
FOREACH instruction PI that has an edge from PI to CI:
spillableRegs[CI] = spillableRegs[CI] - PI.Def() - PI.Use()

// Pick the stack base holder for each instruction
// Pick from persistent registers if the instruction is non-critical
// Pick from spillable registers if the instruction is critical
DEF ComputeStackBaseHolder(kernel):
ComputerPersistentRegs(kernel)
ComputeSpillable(kernel)
FOREACH instruction I in the kernel:
IF I is non-critical:
stackbaseRegs[I] = 2 registers in persistentRegs[I] with smallest ID

IF I is critical:
stackbaseRegs[I] = 2 registers in spillableRegs[I] with smallest ID

LisƟng 3 : Picking the Registers to Hold the Stack Base

The case of the move and restore is preƩy straight forward: we insert the move between an instrucƟon
and its predecessors, and we insert restore between an instrucƟon and its successors. For a criƟcal
instrucƟon internal to a basic block, the pre-spill should happen right before its predecessor, whereas
when it resides at the start of a basic block, the pre-spill should happen at the intermediate block that is
right before the start of the instrucƟon in quesƟon. When mulƟple instrumentaƟon maps to the same
instrumentaƟon site, the pre-spill instrumentaƟon should happen first, followed by move and restore.

We present a breadth-first-search based algorithm that starts from the first instrucƟon of the kernel and
records what registers and what kind of instrumentaƟon is needed at each instrumentaƟon point, and
iterates through all the instrumentaƟon points and inserts the corresponding instrumentaƟon. as shown
in LisƟng 4.

17

// Below are three functions that record the registers involved in three maps for
// each type of instrumentation, indexed by two consecutive instructions

DEF RegisterPreSpill(curInstr,prevInstr):
IF curInstr == BB.Instructions()[0]:
preSpillRegs[prevInstr,curInstr] = stackBaseRegs[curInstr]

ELSE // For CI internal to a Basic Block, pre-spill before its predecessor
preSpillRegs[prevInstr.Predecessor(),prevInstr] = stackBaseRegs[curInstr]

DEF RegisterRestore(curInstr,nextInstr):
restoreRegs[curInstr,nextInstr] = stackBaseRegs[curInstr]

DEF RegisterMove(curInstr,prevInstr):
moveRegs[prevInstr,curInstr] = (stackBaseRegs[prevInstr],stackBaseRegs[curInstr])

// Below are three helper functions that insert instrumentation between the two
// input instructions (or their corresponding intermediate block)

// Instruments preSpill the registers in preSpillRegs[prevInstr,curInstr]
DEF InstrumentPreSpill(prevInstr,curInstr)

// Instruments move from stackBaseRegs[prevInstr] to stackBaseRegs[curInstr]
DEF InstrumentMove(prevInstr,curInstr)

// Instruments restore for registers in restoreRegs[curInstr]
DEF InstrumentRestore(curInstr,nextInstr)

DEF SlidingTilePuzzle(kernel):
ComputeStackBaseHolder(kernel)
workQueue = Queue(kernel.Instructions()[0])
WHILE workQueue.length() !=0 :
curInstr = workQueue.Dequeue()
FOREACH prevInstr in curInstr.Predecessor():
RegisterMove(curInstr,prevInstr)
IF curInstr.IsCritical():
RegisterPreSpill(curInstr,prevInstr)

FOREACH postInstr in curInstr.Successor():
RegisterRestore(curInstr,postInstr)
workQueue.Enqueue(postInstr)

FOREACH (prevInstr,curInstr) in preSpillRegs:
InstrumentPreSpill(prevInstr,curInstr)

FOREACH (prevInstr,curInstr) in moveRegs:
InstrumentMove(prevInstr,curInstr,])

FOREACH (curInstr,nextInstr) in restoreRegs:
InstrumentRestore(curInstr,nextInstr)

LisƟng 4 : Sliding Tile Puzzle Algorithm

18

7 Conclusion

In this paper, we studied the scalar and vector register availability for the 738 kernels in the MIOpen
library using a variety of measures, including the free, explicitly used, and allocated registers. We
leveraged the Dyninst binary analysis and instrumentaƟon toolkit to build a tool that performs control
flow, dataflow, and liveness analysis of the MIOpen GPU kernels on the AMD GFX908, GFX90A, and
GFX940 architectures.

Our findings show that instrumentaƟon is feasible even for these highly-opƟmized library kernels that
are commonly believed to have very few registers available. We described the minimal register
requirement for AMDGPU to enable convenƟonal instrumentaƟon and show that convenƟonal
instrumentaƟon can be enabled on more than 91% of the kernels in the MIOpen library, across the
GFX908, GFX90A, and GFX940 architectures with default register allocaƟon, and this number goes up to
98% when we allow increased register allocaƟon.

Finally, we presented an algorithm that enables register spilling when there are not enough globally free
registers to even hold a stack base, allowing us to cover almost any exisƟng GPU binary on these
architectures.

8 References
[ABF10] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-Crummey and N.R. Talent,

“HPCToolkit: Tools for Performance Analysis of OpƟmized Parallel Programs”, Concurrency and
ComputaƟon: PracƟce and Experience 22, 6, April 2010, pp. 685-701.

[AAS07] D.C. Arnold, D.H. Ahn, B.R. de Supinski, G.L. Lee, B.P. Miller and M. Schulz, “Stack Trace Analysis
for Large Scale Debugging”, 21st IEEE InternaƟonal Parallel and Distributed Processing Symposium
(IPDPS), Long Beach, Calif. March 2007.

[BA04] D.L. Brening, “Efficient, Transparent, and Comprehensive RunƟme Code ManipulaƟon”, Ph.D.
DissertaƟon, MassachuseƩs InsƟtute of Technology, Cambridge, MA, Order Number AAI0807735,
September 2024. hƩp://hdl.handle.net/1721.1/30160.

[BCC21] P. Bauman, N. Chalmers, N. CurƟs,C. Freitag, J. Greathouse, N. Malaya, D. McDougall, S. Moe, R.
Oostrum, and N. Wolfe. IntroducƟon to AMDGPU Programming with HIP. PresentaƟon at
OakRidge NaƟonal Laboratory. April 2021.
hƩps://www.olcf.ornl.gov/wp-content/uploads/2021/04/IntroGPUProgramming-ORNL-Hackathon
-May24-26-2021.pdf

[BK00] B. Buck and J.K. Hollingsworth. 2000. An API for RunƟme Code Patching. InternaƟonal Journal of
High Performance CompuƟng ApplicaƟons 14, 4, November 2000, pp. 317–329

[CWV14] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro, E. Shelhamer, “cuDNN:
Efficient PrimiƟves for Deep Learning”, hƩps://arxiv.org/abs/1410.0759, October 2014.

[ES95] A. Eustace, and A. Srivastava. "ATOM: A Flexible Interface for Building High Performance Program
Analysis Tools", USENIX 1995 Technical Conference , New Orleans, January 1995.

[FMK12] W. Fang, B.P. Miller and J.A. Kupsch, “Automated Tracing and VisualizaƟon of SoŌware Security
Structure and ProperƟes”, 9th InternaƟonal Symposium on VisualizaƟon for Cyber Security
(VizSec), SeaƩle, Washington, October. 2012.

19

[HMC94] J.K. Hollingsworth, B.P. Miller and J. Cargille, "Dynamic Program InstrumentaƟon for Scalable
Performance Tools", Scalable High-performance CompuƟng Conference (SHPCC), Knoxville,
Tennessee, May 1994.

[JBW14] E.R. Jacobson, A.R. Bernat, W.R. Williams and B.P. Miller, “DetecƟng Code Reuse AƩacks with a
Model of Conformant Program ExecuƟon”, InternaƟonal Symposium on Engineering Secure
SoŌware and Systems (ESSoS), Munich, Germany, February 2014.

[K71] K. Kennedy, "A Global Flow Analysis Algorithm", InternaƟonal Journal of Computer MathemaƟcs 3,
1-4, December 1971, pp. 5–15.

[KFT20] J. Khan, P. Fultz, A. Tamazov, D. Lowell, C. Liu, M. Melesse, M. Nandhimandalam, K, Nasyrov, I.
Perminov, T. Shah, V. Filippov, J. Zhang, J. Zhou, B. Natarajan, and M. Daga, “MIOpen: An Open
Source Library For Deep Learning PrimiƟves”, 30th InternaƟonal Conference on Computer
Graphics and Machine Vision (GraphiCon) , Saint Petersburg, Russia, September, 2020.
hƩps://doi.org/10.51130/graphicon-2020-2-2-2

[LCM05] C.-K. Luk, R. Cohn, R. Muth, H. PaƟl, A. Klauser, G. Lowney, S. Wallace, V. Janapa Reddi, and K.
Hazelwood, “PIN: building customized program analysis tools with dynamic instrumentaƟon”,
2005 ACM SIGPLAN Conference on Programming Language Design and ImplementaƟon (PLDI) ,
Chicago, Illinois, June 2005. hƩps://doi.org/10.1145/1065010.1065034.

[LM69] E.S. Lowry and C.W. Medlock. 1969. Object code opƟmizaƟon. CommunicaƟon of ACM 12, 1, Jan.
1969, pp. 13–22. hƩps://doi.org/10.1145/362835.362838

[LSR14] F. Long, S. Sidiroglou-Douskos and M. Rindard, “AutomaƟc RunƟme Error Repair and
Containment Via Recovery Shepherding”, 35th ACM SIGPLAN Conference on Programming
Language Design and ImplementaƟon (PLDI), Edinburgh, Scotland, June 2014.

[MCC95] B.P. Miller, M.D. Callaghan, J.M. Cargille, J.K. Hollingsworth, R.B. Irvin, K.L. Karavanic, K.
Kunchithapadam and T. Newhall, “The Paradyn Parallel Performance Measurement Tool”, IEEE
Computer 28, 11, November 1995, pp. 37-46.

[MP16] X. Meng and B.P. Miller, “Binary Code Is Not Easy” 25th InternaƟonal Symposium on SoŌware
TesƟng and Analysis (ISSTA), Saarbrucken, Germany, July 2016, pp. 24-35.
hƩps://doi.org/10.1145/2931037.2931047

[NBG08] John Nickolls, Ian Buck, Michael Garland, Kevin Skadron: Scalable Parallel Programming with
CUDA. ACM Queue 6, 2, March 2008.

[NS07] Nicholas Nethercote and Julian Seward, “Valgrind: a Framework for Heavyweight Dynamic Binary
InstrumentaƟon”, 28th ACM SIGPLAN Conference on Programming Language Design and
ImplementaƟon (PLDI), San Diego, California, June 2007.
hƩps://doi.org/10.1145/1273442.1250746

[OAK11] P. O’Sullivan, K. Anand, A. Kotha, M. Smithson, R. Barua and A.D. KeromyƟs, “Retrofiƫng
Security in COTS SoŌware with Binary RewriƟng”, 26th IFIP TC-11 InternaƟonal InformaƟon
Security Conference (IFIP SEC), Hamburg, Germany, June 2011.

[SM06] S.S. Shende and A.D. Malony, “The Tau Parallel Performance System”, InternaƟonal Journal of
High Performance CompuƟng ApplicaƟons 20, 2. May 2006, pp. 287-311.

20

